Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 148 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

WrapNet: Neural Net Inference with Ultra-Low-Resolution Arithmetic (2007.13242v1)

Published 26 Jul 2020 in cs.LG and stat.ML

Abstract: Low-resolution neural networks represent both weights and activations with few bits, drastically reducing the multiplication complexity. Nonetheless, these products are accumulated using high-resolution (typically 32-bit) additions, an operation that dominates the arithmetic complexity of inference when using extreme quantization (e.g., binary weights). To further optimize inference, we propose a method that adapts neural networks to use low-resolution (8-bit) additions in the accumulators, achieving classification accuracy comparable to their 32-bit counterparts. We achieve resilience to low-resolution accumulation by inserting a cyclic activation layer, as well as an overflow penalty regularizer. We demonstrate the efficacy of our approach on both software and hardware platforms.

Citations (14)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.