Papers
Topics
Authors
Recent
2000 character limit reached

Cyclotomic Identity Testing and Applications

Published 26 Jul 2020 in cs.CC and cs.SC | (2007.13179v2)

Abstract: We consider the cyclotomic identity testing (CIT) problem: given a polynomial $f(x_1,\ldots,x_k)$, decide whether $f(\zeta_n{e_1},\ldots,\zeta_n{e_k})$ is zero, where $\zeta_n = e{2\pi i/n}$ is a primitive complex $n$-th root of unity and $e_1,\ldots,e_k$ are integers, represented in binary. When $f$ is given by an algebraic circuit, we give a randomized polynomial-time algorithm for CIT assuming the generalised Riemann hypothesis (GRH), and show that the problem is in coNP unconditionally. When $f$ is given by a circuit of polynomially bounded degree, we give a randomized NC algorithm. In case $f$ is a linear form we show that the problem lies in NC. Towards understanding when CIT can be solved in deterministic polynomial-time, we consider so-called diagonal depth-3 circuits, i.e., polynomials $f=\sum_{i=1}m g_i{d_i}$, where $g_i$ is a linear form and $d_i$ a positive integer given in unary. We observe that a polynomial-time algorithm for CIT on this class would yield a sub-exponential-time algorithm for polynomial identity testing. However, assuming GRH, we show that if the linear forms~$g_i$ are all identical then CIT can be solved in polynomial time. Finally, we use our results to give a new proof that equality of compressed strings, i.e., strings presented using context-free grammars, can be decided in randomized NC.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.