Papers
Topics
Authors
Recent
2000 character limit reached

MAGMA: Inference and Prediction with Multi-Task Gaussian Processes

Published 21 Jul 2020 in stat.CO, cs.LG, stat.ME, and stat.ML | (2007.10731v2)

Abstract: A novel multi-task Gaussian process (GP) framework is proposed, by using a common mean process for sharing information across tasks. In particular, we investigate the problem of time series forecasting, with the objective to improve multiple-step-ahead predictions. The common mean process is defined as a GP for which the hyper-posterior distribution is tractable. Therefore an EM algorithm is derived for handling both hyper-parameters optimisation and hyper-posterior computation. Unlike previous approaches in the literature, the model fully accounts for uncertainty and can handle irregular grids of observations while maintaining explicit formulations, by modelling the mean process in a unified GP framework. Predictive analytical equations are provided, integrating information shared across tasks through a relevant prior mean. This approach greatly improves the predictive performances, even far from observations, and may reduce significantly the computational complexity compared to traditional multi-task GP models. Our overall algorithm is called \textsc{Magma} (standing for Multi tAsk Gaussian processes with common MeAn). The quality of the mean process estimation, predictive performances, and comparisons to alternatives are assessed in various simulated scenarios and on real datasets.

Citations (10)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.