Papers
Topics
Authors
Recent
2000 character limit reached

Unlocking the Potential of Deep Counterfactual Value Networks

Published 20 Jul 2020 in cs.AI and cs.LG | (2007.10442v1)

Abstract: Deep counterfactual value networks combined with continual resolving provide a way to conduct depth-limited search in imperfect-information games. However, since their introduction in the DeepStack poker AI, deep counterfactual value networks have not seen widespread adoption. In this paper we introduce several improvements to deep counterfactual value networks, as well as counterfactual regret minimization, and analyze the effects of each change. We combined these improvements to create the poker AI Supremus. We show that while a reimplementation of DeepStack loses head-to-head against the strong benchmark agent Slumbot, Supremus successfully beats Slumbot by an extremely large margin and also achieves a lower exploitability than DeepStack against a local best response. Together, these results show that with our key improvements, deep counterfactual value networks can achieve state-of-the-art performance.

Citations (18)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 5 tweets with 122 likes about this paper.