Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multimodal Dialogue State Tracking By QA Approach with Data Augmentation (2007.09903v1)

Published 20 Jul 2020 in cs.CL

Abstract: Recently, a more challenging state tracking task, Audio-Video Scene-Aware Dialogue (AVSD), is catching an increasing amount of attention among researchers. Different from purely text-based dialogue state tracking, the dialogue in AVSD contains a sequence of question-answer pairs about a video and the final answer to the given question requires additional understanding of the video. This paper interprets the AVSD task from an open-domain Question Answering (QA) point of view and proposes a multimodal open-domain QA system to deal with the problem. The proposed QA system uses common encoder-decoder framework with multimodal fusion and attention. Teacher forcing is applied to train a natural language generator. We also propose a new data augmentation approach specifically under QA assumption. Our experiments show that our model and techniques bring significant improvements over the baseline model on the DSTC7-AVSD dataset and demonstrate the potentials of our data augmentation techniques.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Xiangyang Mou (8 papers)
  2. Brandyn Sigouin (1 paper)
  3. Ian Steenstra (5 papers)
  4. Hui Su (38 papers)
Citations (9)