Resource Allocation in Uplink NOMA-IoT Networks: A Reinforcement-Learning Approach
Abstract: Non-orthogonal multiple access (NOMA) exploits the potential of the power domain to enhance the connectivity for the Internet of Things (IoT). Due to time-varying communication channels, dynamic user clustering is a promising method to increase the throughput of NOMA-IoT networks. This paper develops an intelligent resource allocation scheme for uplink NOMA-IoT communications. To maximise the average performance of sum rates, this work designs an efficient optimization approach based on two reinforcement learning algorithms, namely deep reinforcement learning (DRL) and SARSA-learning. For light traffic, SARSA-learning is used to explore the safest resource allocation policy with low cost. For heavy traffic, DRL is used to handle traffic-introduced huge variables. With the aid of the considered approach, this work addresses two main problems of fair resource allocation in NOMA techniques: 1) allocating users dynamically and 2) balancing resource blocks and network traffic. We analytically demonstrate that the rate of convergence is inversely proportional to network sizes. Numerical results show that: 1) Compared with the optimal benchmark scheme, the proposed DRL and SARSA-learning algorithms have lower complexity with acceptable accuracy and 2) NOMA-enabled IoT networks outperform the conventional orthogonal multiple access based IoT networks in terms of system throughput.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.