Papers
Topics
Authors
Recent
Search
2000 character limit reached

Graph topology inference benchmarks for machine learning

Published 16 Jul 2020 in cs.LG and stat.ML | (2007.08216v1)

Abstract: Graphs are nowadays ubiquitous in the fields of signal processing and machine learning. As a tool used to express relationships between objects, graphs can be deployed to various ends: I) clustering of vertices, II) semi-supervised classification of vertices, III) supervised classification of graph signals, and IV) denoising of graph signals. However, in many practical cases graphs are not explicitly available and must therefore be inferred from data. Validation is a challenging endeavor that naturally depends on the downstream task for which the graph is learnt. Accordingly, it has often been difficult to compare the efficacy of different algorithms. In this work, we introduce several ease-to-use and publicly released benchmarks specifically designed to reveal the relative merits and limitations of graph inference methods. We also contrast some of the most prominent techniques in the literature.

Citations (4)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.