Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bot-Match: Social Bot Detection with Recursive Nearest Neighbors Search (2007.07636v1)

Published 15 Jul 2020 in cs.SI and cs.LG

Abstract: Social bots have emerged over the last decade, initially creating a nuisance while more recently used to intimidate journalists, sway electoral events, and aggravate existing social fissures. This social threat has spawned a bot detection algorithms race in which detection algorithms evolve in an attempt to keep up with increasingly sophisticated bot accounts. This cat and mouse cycle has illuminated the limitations of supervised machine learning algorithms, where researchers attempt to use yesterday's data to predict tomorrow's bots. This gap means that researchers, journalists, and analysts daily identify malicious bot accounts that are undetected by state of the art supervised bot detection algorithms. These analysts often desire to find similar bot accounts without labeling/training a new model, where similarity can be defined by content, network position, or both. A similarity based algorithm could complement existing supervised and unsupervised methods and fill this gap. To this end, we present the Bot-Match methodology in which we evaluate social media embeddings that enable a semi-supervised recursive nearest neighbors search to map an emerging social cybersecurity threat given one or more seed accounts.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. David M. Beskow (3 papers)
  2. Kathleen M. Carley (73 papers)
Citations (2)

Summary

We haven't generated a summary for this paper yet.