Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Revisiting One-vs-All Classifiers for Predictive Uncertainty and Out-of-Distribution Detection in Neural Networks (2007.05134v1)

Published 10 Jul 2020 in cs.LG and stat.ML

Abstract: Accurate estimation of predictive uncertainty in modern neural networks is critical to achieve well calibrated predictions and detect out-of-distribution (OOD) inputs. The most promising approaches have been predominantly focused on improving model uncertainty (e.g. deep ensembles and Bayesian neural networks) and post-processing techniques for OOD detection (e.g. ODIN and Mahalanobis distance). However, there has been relatively little investigation into how the parametrization of the probabilities in discriminative classifiers affects the uncertainty estimates, and the dominant method, softmax cross-entropy, results in misleadingly high confidences on OOD data and under covariate shift. We investigate alternative ways of formulating probabilities using (1) a one-vs-all formulation to capture the notion of "none of the above", and (2) a distance-based logit representation to encode uncertainty as a function of distance to the training manifold. We show that one-vs-all formulations can improve calibration on image classification tasks, while matching the predictive performance of softmax without incurring any additional training or test-time complexity.

Citations (43)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com