Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Binary Stochastic Filtering: feature selection and beyond (2007.03920v1)

Published 8 Jul 2020 in cs.LG and stat.ML

Abstract: Feature selection is one of the most decisive tools in understanding data and machine learning models. Among other methods, sparsity induced by $L{1}$ penalty is one of the simplest and best studied approaches to this problem. Although such regularization is frequently used in neural networks to achieve sparsity of weights or unit activations, it is unclear how it can be employed in the feature selection problem. This work aims at extending the neural network with ability to automatically select features by rethinking how the sparsity regularization can be used, namely, by stochastically penalizing feature involvement instead of the layer weights. The proposed method has demonstrated superior efficiency when compared to a few classical methods, achieved with minimal or no computational overhead, and can be directly applied to any existing architecture. Furthermore, the method is easily generalizable for neuron pruning and selection of regions of importance for spectral data.

Citations (4)

Summary

We haven't generated a summary for this paper yet.