Papers
Topics
Authors
Recent
2000 character limit reached

Density Fixing: Simple yet Effective Regularization Method based on the Class Prior

Published 8 Jul 2020 in cs.LG and stat.ML | (2007.03899v2)

Abstract: Machine learning models suffer from overfitting, which is caused by a lack of labeled data. To tackle this problem, we proposed a framework of regularization methods, called density-fixing, that can be used commonly for supervised and semi-supervised learning. Our proposed regularization method improves the generalization performance by forcing the model to approximate the class's prior distribution or the frequency of occurrence. This regularization term is naturally derived from the formula of maximum likelihood estimation and is theoretically justified. We further provide the several theoretical analyses of the proposed method including asymptotic behavior. Our experimental results on multiple benchmark datasets are sufficient to support our argument, and we suggest that this simple and effective regularization method is useful in real-world machine learning problems.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.