Papers
Topics
Authors
Recent
2000 character limit reached

Why Mixup Improves the Model Performance

Published 11 Jun 2020 in stat.ML and cs.LG | (2006.06231v4)

Abstract: Machine learning techniques are used in a wide range of domains. However, machine learning models often suffer from the problem of over-fitting. Many data augmentation methods have been proposed to tackle such a problem, and one of them is called mixup. Mixup is a recently proposed regularization procedure, which linearly interpolates a random pair of training examples. This regularization method works very well experimentally, but its theoretical guarantee is not adequately discussed. In this study, we aim to discover why mixup works well from the aspect of the statistical learning theory.

Citations (9)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.