Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Why Mixup Improves the Model Performance (2006.06231v4)

Published 11 Jun 2020 in stat.ML and cs.LG

Abstract: Machine learning techniques are used in a wide range of domains. However, machine learning models often suffer from the problem of over-fitting. Many data augmentation methods have been proposed to tackle such a problem, and one of them is called mixup. Mixup is a recently proposed regularization procedure, which linearly interpolates a random pair of training examples. This regularization method works very well experimentally, but its theoretical guarantee is not adequately discussed. In this study, we aim to discover why mixup works well from the aspect of the statistical learning theory.

Citations (9)

Summary

We haven't generated a summary for this paper yet.