Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Detecting Signatures of Early-stage Dementia with Behavioural Models Derived from Sensor Data (2007.03615v1)

Published 3 Jul 2020 in cs.CY, cs.LG, eess.SP, and stat.ML

Abstract: There is a pressing need to automatically understand the state and progression of chronic neurological diseases such as dementia. The emergence of state-of-the-art sensing platforms offers unprecedented opportunities for indirect and automatic evaluation of disease state through the lens of behavioural monitoring. This paper specifically seeks to characterise behavioural signatures of mild cognitive impairment (MCI) and Alzheimer's disease (AD) in the \textit{early} stages of the disease. We introduce bespoke behavioural models and analyses of key symptoms and deploy these on a novel dataset of longitudinal sensor data from persons with MCI and AD. We present preliminary findings that show the relationship between levels of sleep quality and wandering can be subtly different between patients in the early stages of dementia and healthy cohabiting controls.

Citations (8)

Summary

We haven't generated a summary for this paper yet.