Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Confounding Ghost Channels and Causality: A New Approach to Causal Information Flows (2007.03129v1)

Published 6 Jul 2020 in cs.IT and math.IT

Abstract: Information theory provides a fundamental framework for the quantification of information flows through channels, formally Markov kernels. However, quantities such as mutual information and conditional mutual information do not necessarily reflect the causal nature of such flows. We argue that this is often the result of conditioning based on sigma algebras that are not associated with the given channels. We propose a version of the (conditional) mutual information based on families of sigma algebras that are coupled with the underlying channel. This leads to filtrations which allow us to prove a corresponding causal chain rule as a basic requirement within the presented approach.

Citations (4)

Summary

We haven't generated a summary for this paper yet.