Papers
Topics
Authors
Recent
2000 character limit reached

Ground Truth Free Denoising by Optimal Transport

Published 3 Jul 2020 in cs.CV, cs.NE, math.FA, and math.OC | (2007.01575v1)

Abstract: We present a learned unsupervised denoising method for arbitrary types of data, which we explore on images and one-dimensional signals. The training is solely based on samples of noisy data and examples of noise, which -- critically -- do not need to come in pairs. We only need the assumption that the noise is independent and additive (although we describe how this can be extended). The method rests on a Wasserstein Generative Adversarial Network setting, which utilizes two critics and one generator.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.