Unpaired Image Denoising
Abstract: Deep learning approaches in image processing predominantly resort to supervised learning. A majority of methods for image denoising are no exception to this rule and hence demand pairs of noisy and corresponding clean images. Only recently has there been the emergence of methods such as Noise2Void, where a deep neural network learns to denoise solely from noisy images. However, when clean images that do not directly correspond to any of the noisy images are actually available, there is room for improvement as these clean images contain useful information that fully unsupervised methods do not exploit. In this paper, we propose a method for image denoising in this setting. First, we use a flow-based generative model to learn a prior from clean images. We then use it to train a denoising network without the need for any clean targets. We demonstrate the efficacy of our method through extensive experiments and comparisons.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.