Papers
Topics
Authors
Recent
2000 character limit reached

On the derivation of the renewal equation from an age-dependent branching process: an epidemic modelling perspective (2006.16487v1)

Published 30 Jun 2020 in q-bio.PE, q-bio.QM, and stat.AP

Abstract: Renewal processes are a popular approach used in modelling infectious disease outbreaks. In a renewal process, previous infections give rise to future infections. However, while this formulation seems sensible, its application to infectious disease can be difficult to justify from first principles. It has been shown from the seminal work of Bellman and Harris that the renewal equation arises as the expectation of an age-dependent branching process. In this paper we provide a detailed derivation of the original Bellman Harris process. We introduce generalisations, that allow for time-varying reproduction numbers and the accounting of exogenous events, such as importations. We show how inference on the renewal equation is easy to accomplish within a Bayesian hierarchical framework. Using off the shelf MCMC packages, we fit to South Korea COVID-19 case data to estimate reproduction numbers and importations. Our derivation provides the mathematical fundamentals and assumptions underpinning the use of the renewal equation for modelling outbreaks.

Citations (16)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.