Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Neural Network Middle-Term Probabilistic Forecasting of Daily Power Consumption (2006.16388v2)

Published 5 Jun 2020 in stat.ME, eess.SP, and stat.ML

Abstract: Middle-term horizon (months to a year) power consumption prediction is a main challenge in the energy sector, in particular when probabilistic forecasting is considered. We propose a new modelling approach that incorporates trend, seasonality and weather conditions, as explicative variables in a shallow Neural Network with an autoregressive feature. We obtain excellent results for density forecast on the one-year test set applying it to the daily power consumption in New England U.S.A.. The quality of the achieved power consumption probabilistic forecasting has been verified, on the one hand, comparing the results to other standard models for density forecasting and, on the other hand, considering measures that are frequently used in the energy sector as pinball loss and CI backtesting.

Citations (3)

Summary

We haven't generated a summary for this paper yet.