Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multi-Head Attention: Collaborate Instead of Concatenate (2006.16362v2)

Published 29 Jun 2020 in cs.LG, cs.CL, and stat.ML

Abstract: Attention layers are widely used in NLP and are beginning to influence computer vision architectures. Training very large transformer models allowed significant improvement in both fields, but once trained, these networks show symptoms of over-parameterization. For instance, it is known that many attention heads can be pruned without impacting accuracy. This work aims to enhance current understanding on how multiple heads interact. Motivated by the observation that attention heads learn redundant key/query projections, we propose a collaborative multi-head attention layer that enables heads to learn shared projections. Our scheme decreases the number of parameters in an attention layer and can be used as a drop-in replacement in any transformer architecture. Our experiments confirm that sharing key/query dimensions can be exploited in language understanding, machine translation and vision. We also show that it is possible to re-parametrize a pre-trained multi-head attention layer into our collaborative attention layer. Collaborative multi-head attention reduces the size of the key and query projections by 4 for same accuracy and speed. Our code is public.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Jean-Baptiste Cordonnier (8 papers)
  2. Andreas Loukas (43 papers)
  3. Martin Jaggi (155 papers)
Citations (84)