Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Unsupervised Learning of Video Representations via Dense Trajectory Clustering (2006.15731v1)

Published 28 Jun 2020 in cs.CV

Abstract: This paper addresses the task of unsupervised learning of representations for action recognition in videos. Previous works proposed to utilize future prediction, or other domain-specific objectives to train a network, but achieved only limited success. In contrast, in the relevant field of image representation learning, simpler, discrimination-based methods have recently bridged the gap to fully-supervised performance. We first propose to adapt two top performing objectives in this class - instance recognition and local aggregation, to the video domain. In particular, the latter approach iterates between clustering the videos in the feature space of a network and updating it to respect the cluster with a non-parametric classification loss. We observe promising performance, but qualitative analysis shows that the learned representations fail to capture motion patterns, grouping the videos based on appearance. To mitigate this issue, we turn to the heuristic-based IDT descriptors, that were manually designed to encode motion patterns in videos. We form the clusters in the IDT space, using these descriptors as a an unsupervised prior in the iterative local aggregation algorithm. Our experiments demonstrates that this approach outperform prior work on UCF101 and HMDB51 action recognition benchmarks. We also qualitatively analyze the learned representations and show that they successfully capture video dynamics.

Citations (22)

Summary

We haven't generated a summary for this paper yet.