Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

SimGANs: Simulator-Based Generative Adversarial Networks for ECG Synthesis to Improve Deep ECG Classification (2006.15353v1)

Published 27 Jun 2020 in eess.SP and cs.LG

Abstract: Generating training examples for supervised tasks is a long sought after goal in AI. We study the problem of heart signal electrocardiogram (ECG) synthesis for improved heartbeat classification. ECG synthesis is challenging: the generation of training examples for such biological-physiological systems is not straightforward, due to their dynamic nature in which the various parts of the system interact in complex ways. However, an understanding of these dynamics has been developed for years in the form of mathematical process simulators. We study how to incorporate this knowledge into the generative process by leveraging a biological simulator for the task of ECG classification. Specifically, we use a system of ordinary differential equations representing heart dynamics, and incorporate this ODE system into the optimization process of a generative adversarial network to create biologically plausible ECG training examples. We perform empirical evaluation and show that heart simulation knowledge during the generation process improves ECG classification.

Citations (62)

Summary

We haven't generated a summary for this paper yet.