Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Subpopulation Data Poisoning Attacks (2006.14026v3)

Published 24 Jun 2020 in cs.LG, cs.CR, and stat.ML

Abstract: Machine learning systems are deployed in critical settings, but they might fail in unexpected ways, impacting the accuracy of their predictions. Poisoning attacks against machine learning induce adversarial modification of data used by a machine learning algorithm to selectively change its output when it is deployed. In this work, we introduce a novel data poisoning attack called a \emph{subpopulation attack}, which is particularly relevant when datasets are large and diverse. We design a modular framework for subpopulation attacks, instantiate it with different building blocks, and show that the attacks are effective for a variety of datasets and machine learning models. We further optimize the attacks in continuous domains using influence functions and gradient optimization methods. Compared to existing backdoor poisoning attacks, subpopulation attacks have the advantage of inducing misclassification in naturally distributed data points at inference time, making the attacks extremely stealthy. We also show that our attack strategy can be used to improve upon existing targeted attacks. We prove that, under some assumptions, subpopulation attacks are impossible to defend against, and empirically demonstrate the limitations of existing defenses against our attacks, highlighting the difficulty of protecting machine learning against this threat.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Matthew Jagielski (51 papers)
  2. Giorgio Severi (11 papers)
  3. Niklas Pousette Harger (1 paper)
  4. Alina Oprea (56 papers)
Citations (101)

Summary

We haven't generated a summary for this paper yet.