Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Global Optimality of Model-Agnostic Meta-Learning (2006.13182v1)

Published 23 Jun 2020 in cs.LG and stat.ML

Abstract: Model-agnostic meta-learning (MAML) formulates meta-learning as a bilevel optimization problem, where the inner level solves each subtask based on a shared prior, while the outer level searches for the optimal shared prior by optimizing its aggregated performance over all the subtasks. Despite its empirical success, MAML remains less understood in theory, especially in terms of its global optimality, due to the nonconvexity of the meta-objective (the outer-level objective). To bridge such a gap between theory and practice, we characterize the optimality gap of the stationary points attained by MAML for both reinforcement learning and supervised learning, where the inner-level and outer-level problems are solved via first-order optimization methods. In particular, our characterization connects the optimality gap of such stationary points with (i) the functional geometry of inner-level objectives and (ii) the representation power of function approximators, including linear models and neural networks. To the best of our knowledge, our analysis establishes the global optimality of MAML with nonconvex meta-objectives for the first time.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Lingxiao Wang (74 papers)
  2. Qi Cai (40 papers)
  3. Zhuoran Yang (155 papers)
  4. Zhaoran Wang (164 papers)
Citations (39)

Summary

We haven't generated a summary for this paper yet.