Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 92 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 32 tok/s
GPT-5 High 40 tok/s Pro
GPT-4o 83 tok/s
GPT OSS 120B 467 tok/s Pro
Kimi K2 197 tok/s Pro
2000 character limit reached

Labeling Explicit Discourse Relations using Pre-trained Language Models (2006.11852v1)

Published 21 Jun 2020 in cs.CL

Abstract: Labeling explicit discourse relations is one of the most challenging sub-tasks of the shallow discourse parsing where the goal is to identify the discourse connectives and the boundaries of their arguments. The state-of-the-art models achieve slightly above 45% of F-score by using hand-crafted features. The current paper investigates the efficacy of the pre-trained LLMs in this task. We find that the pre-trained LLMs, when finetuned, are powerful enough to replace the linguistic features. We evaluate our model on PDTB 2.0 and report the state-of-the-art results in the extraction of the full relation. This is the first time when a model outperforms the knowledge intensive models without employing any linguistic features.

Citations (7)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)