Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Optimal and Practical Algorithms for Smooth and Strongly Convex Decentralized Optimization (2006.11773v2)

Published 21 Jun 2020 in math.OC and stat.ML

Abstract: We consider the task of decentralized minimization of the sum of smooth strongly convex functions stored across the nodes of a network. For this problem, lower bounds on the number of gradient computations and the number of communication rounds required to achieve $\varepsilon$ accuracy have recently been proven. We propose two new algorithms for this decentralized optimization problem and equip them with complexity guarantees. We show that our first method is optimal both in terms of the number of communication rounds and in terms of the number of gradient computations. Unlike existing optimal algorithms, our algorithm does not rely on the expensive evaluation of dual gradients. Our second algorithm is optimal in terms of the number of communication rounds, without a logarithmic factor. Our approach relies on viewing the two proposed algorithms as accelerated variants of the Forward Backward algorithm to solve monotone inclusions associated with the decentralized optimization problem. We also verify the efficacy of our methods against state-of-the-art algorithms through numerical experiments.

Citations (79)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.