Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Image classification in frequency domain with 2SReLU: a second harmonics superposition activation function (2006.10853v1)

Published 18 Jun 2020 in cs.CV and eess.IV

Abstract: Deep Convolutional Neural Networks are able to identify complex patterns and perform tasks with super-human capabilities. However, besides the exceptional results, they are not completely understood and it is still impractical to hand-engineer similar solutions. In this work, an image classification Convolutional Neural Network and its building blocks are described from a frequency domain perspective. Some network layers have established counterparts in the frequency domain like the convolutional and pooling layers. We propose the 2SReLU layer, a novel non-linear activation function that preserves high frequency components in deep networks. It is demonstrated that in the frequency domain it is possible to achieve competitive results without using the computationally costly convolution operation. A source code implementation in PyTorch is provided at: https://gitlab.com/thomio/2srelu

Citations (20)

Summary

We haven't generated a summary for this paper yet.