Papers
Topics
Authors
Recent
Search
2000 character limit reached

A Deep Neural Network for Audio Classification with a Classifier Attention Mechanism

Published 14 Jun 2020 in eess.AS, cs.LG, cs.SD, and stat.ML | (2006.09815v1)

Abstract: Audio classification is considered as a challenging problem in pattern recognition. Recently, many algorithms have been proposed using deep neural networks. In this paper, we introduce a new attention-based neural network architecture called Classifier-Attention-Based Convolutional Neural Network (CAB-CNN). The algorithm uses a newly designed architecture consisting of a list of simple classifiers and an attention mechanism as a classifier selector. This design significantly reduces the number of parameters required by the classifiers and thus their complexities. In this way, it becomes easier to train the classifiers and achieve a high and steady performance. Our claims are corroborated by the experimental results. Compared to the state-of-the-art algorithms, our algorithm achieves more than 10% improvements on all selected test scores.

Citations (12)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.