Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Multi-Channel Temporal Attention Convolutional Neural Network Model for Environmental Sound Classification (2011.02561v1)

Published 4 Nov 2020 in eess.AS and cs.SD

Abstract: Recently, many attention-based deep neural networks have emerged and achieved state-of-the-art performance in environmental sound classification. The essence of attention mechanism is assigning contribution weights on different parts of features, namely channels, spectral or spatial contents, and temporal frames. In this paper, we propose an effective convolutional neural network structure with a multi-channel temporal attention (MCTA) block, which applies a temporal attention mechanism within each channel of the embedded features to extract channel-wise relevant temporal information. This multi-channel temporal attention structure will result in a distinct attention vector for each channel, which enables the network to fully exploit the relevant temporal information in different channels. The datasets used to test our model include ESC-50 and its subset ESC-10, along with development sets of DCASE 2018 and 2019. In our experiments, MCTA performed better than the single-channel temporal attention model and the non-attention model with the same number of parameters. Furthermore, we compared our model with some successful attention-based models and obtained competitive results with a relatively lighter network.

Citations (17)

Summary

We haven't generated a summary for this paper yet.