Papers
Topics
Authors
Recent
2000 character limit reached

End-to-End Code Switching Language Models for Automatic Speech Recognition

Published 16 Jun 2020 in cs.CL, cs.SD, and eess.AS | (2006.08870v1)

Abstract: In this paper, we particularly work on the code-switched text, one of the most common occurrences in the bilingual communities across the world. Due to the discrepancies in the extraction of code-switched text from an Automated Speech Recognition(ASR) module, and thereby extracting the monolingual text from the code-switched text, we propose an approach for extracting monolingual text using Deep Bi-directional LLMs(LM) such as BERT and other Machine Translation models, and also explore different ways of extracting code-switched text from the ASR model. We also explain the robustness of the model by comparing the results of Perplexity and other different metrics like WER, to the standard bi-lingual text output without any external information.

Citations (3)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.