Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Using heterogeneity in semi-supervised transcription hypotheses to improve code-switched speech recognition (2106.07699v1)

Published 14 Jun 2021 in cs.CL, cs.SD, and eess.AS

Abstract: Modeling code-switched speech is an important problem in automatic speech recognition (ASR). Labeled code-switched data are rare, so monolingual data are often used to model code-switched speech. These monolingual data may be more closely matched to one of the languages in the code-switch pair. We show that such asymmetry can bias prediction toward the better-matched language and degrade overall model performance. To address this issue, we propose a semi-supervised approach for code-switched ASR. We consider the case of English-Mandarin code-switching, and the problem of using monolingual data to build bilingual "transcription models'' for annotation of unlabeled code-switched data. We first build multiple transcription models so that their individual predictions are variously biased toward either English or Mandarin. We then combine these biased transcriptions using confidence-based selection. This strategy generates a superior transcript for semi-supervised training, and obtains a 19% relative improvement compared to a semi-supervised system that relies on a transcription model built with only the best-matched monolingual data.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Andrew Slottje (1 paper)
  2. Shannon Wotherspoon (4 papers)
  3. William Hartmann (11 papers)
  4. Matthew Snover (7 papers)
  5. Owen Kimball (2 papers)