Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Systematic Generalisation through Task Temporal Logic and Deep Reinforcement Learning (2006.08767v3)

Published 12 Jun 2020 in cs.LG, cs.AI, and stat.ML

Abstract: This work introduces a neuro-symbolic agent that combines deep reinforcement learning (DRL) with temporal logic (TL) to achieve systematic zero-shot, i.e., never-seen-before, generalisation of formally specified instructions. In particular, we present a neuro-symbolic framework where a symbolic module transforms TL specifications into a form that helps the training of a DRL agent targeting generalisation, while a neural module learns systematically to solve the given tasks. We study the emergence of systematic learning in different settings and find that the architecture of the convolutional layers is key when generalising to new instructions. We also provide evidence that systematic learning can emerge with abstract operators such as negation when learning from a few training examples, which previous research have struggled with.

Citations (28)

Summary

We haven't generated a summary for this paper yet.