Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Algorithm to find Superior Fitness on NK Landscapes under High Complexity: Muddling Through (2006.08333v2)

Published 6 Jun 2020 in cs.AI, cs.MA, and q-bio.PE

Abstract: Under high complexity - given by pervasive interdependence between constituent elements of a decision in an NK landscape - our algorithm obtains fitness superior to that reported in extant research. We distribute the decision elements comprising a decision into clusters. When a change in value of a decision element is considered, a forward move is made if the aggregate fitness of the cluster members residing alongside the decision element is higher. The decision configuration with the highest fitness in the path is selected. Increasing the number of clusters obtains even higher fitness. Further, implementing moves comprising of up to two changes in a cluster also obtains higher fitness. Our algorithm obtains superior outcomes by enabling more extensive search, allowing inspection of more distant configurations. We name this algorithm the muddling through algorithm, in memory of Charles Lindblom who spotted the efficacy of the process long before sophisticated computer simulations came into being.

Citations (2)

Summary

We haven't generated a summary for this paper yet.