Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 138 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

On weak conditional convergence of bivariate Archimedean and Extreme Value copulas, and consequences to nonparametric estimation (2006.07131v2)

Published 12 Jun 2020 in math.ST and stat.TH

Abstract: Looking at bivariate copulas from the perspective of conditional distributions and considering weak convergence of almost all conditional distributions yields the notion of weak conditional convergence. At first glance, this notion of convergence for copulas might seem far too restrictive to be of any practical importance - in fact, given samples of a copula $C$ the corresponding empirical copulas do not converge weakly conditional to $C$ with probability one in general. Within the class of Archimedean copulas and the class of Extreme Value copulas, however, standard pointwise convergence and weak conditional convergence can even be proved to be equivalent. Moreover, it can be shown that every copula $C$ is the weak conditional limit of a sequence of checkerboard copulas. After proving these three main results and pointing out some consequences we sketch some implications for two recently introduced dependence measures and for the nonparametric estimation of Archimedean and Extreme Value copulas.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube