Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Run-time Mapping of Spiking Neural Networks to Neuromorphic Hardware (2006.06777v1)

Published 11 Jun 2020 in cs.NE and cs.ET

Abstract: In this paper, we propose a design methodology to partition and map the neurons and synapses of online learning SNN-based applications to neuromorphic architectures at {run-time}. Our design methodology operates in two steps -- step 1 is a layer-wise greedy approach to partition SNNs into clusters of neurons and synapses incorporating the constraints of the neuromorphic architecture, and step 2 is a hill-climbing optimization algorithm that minimizes the total spikes communicated between clusters, improving energy consumption on the shared interconnect of the architecture. We conduct experiments to evaluate the feasibility of our algorithm using synthetic and realistic SNN-based applications. We demonstrate that our algorithm reduces SNN mapping time by an average 780x compared to a state-of-the-art design-time based SNN partitioning approach with only 6.25\% lower solution quality.

Citations (24)

Summary

We haven't generated a summary for this paper yet.