Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Conditional Normalizing Flows for Low-Dose Computed Tomography Image Reconstruction (2006.06270v1)

Published 11 Jun 2020 in eess.IV

Abstract: Image reconstruction from computed tomography (CT) measurement is a challenging statistical inverse problem since a high-dimensional conditional distribution needs to be estimated. Based on training data obtained from high-quality reconstructions, we aim to learn a conditional density of images from noisy low-dose CT measurements. To tackle this problem, we propose a hybrid conditional normalizing flow, which integrates the physical model by using the filtered back-projection as conditioner. We evaluate our approach on a low-dose CT benchmark and demonstrate superior performance in terms of structural similarity of our flow-based method compared to other deep learning based approaches.

Citations (17)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.