Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 28 tok/s
GPT-5 High 35 tok/s Pro
GPT-4o 94 tok/s
GPT OSS 120B 476 tok/s Pro
Kimi K2 190 tok/s Pro
2000 character limit reached

OpEvo: An Evolutionary Method for Tensor Operator Optimization (2006.05664v2)

Published 10 Jun 2020 in cs.LG, cs.NE, and stat.ML

Abstract: Training and inference efficiency of deep neural networks highly rely on the performance of tensor operators on hardware platforms. Manually optimizing tensor operators has limitations in terms of supporting new operators or hardware platforms. Therefore, automatically optimizing device code configurations of tensor operators is getting increasingly attractive. However, current methods for tensor operator optimization usually suffer from poor sample-efficiency due to the combinatorial search space. In this work, we propose a novel evolutionary method, OpEvo, which efficiently explores the search spaces of tensor operators by introducing a topology-aware mutation operation based on q-random walk to leverage the topological structures over the search spaces. Our comprehensive experiment results show that compared with state-of-the-art (SOTA) methods OpEvo can find the best configuration with the lowest variance and least efforts in the number of trials and wall-clock time. All code of this work is available online.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.