2000 character limit reached
Machine Learning for Imaging Cherenkov Detectors
Published 9 Jun 2020 in physics.ins-det, cs.LG, and physics.data-an | (2006.05543v1)
Abstract: Imaging Cherenkov detectors are largely used in modern nuclear and particle physics experiments where cutting-edge solutions are needed to face always more growing computing demands. This is a fertile ground for AI-based approaches and at present we are witnessing the onset of new highly efficient and fast applications. This paper focuses on novel directions with applications to Cherenkov detectors. In particular, recent advances on detector design and calibration, as well as particle identification are presented.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.