Standardised convolutional filtering for radiomics (2006.05470v9)
Abstract: The Image Biomarker Standardisation Initiative (IBSI) aims to improve reproducibility of radiomics studies by standardising the computational process of extracting image biomarkers (features) from images. We have previously established reference values for 169 commonly used features, created a standard radiomics image processing scheme, and developed reporting guidelines for radiomic studies. However, several aspects are not standardised. Here we present a complete version of a reference manual on the use of convolutional filters in radiomics and quantitative image analysis. Filters, such as wavelets or Laplacian of Gaussian filters, play an important part in emphasising specific image characteristics such as edges and blobs. Features derived from filter response maps were found to be poorly reproducible. This reference manual provides definitions for convolutional filters, parameters that should be reported, reference feature values, and tests to verify software compliance with the reference standard.
- Exploring local rotation invariance in 3D CNNs with steerable filters. In Medical Imaging with Deep Learning, MIDL, 2019.
- Local rotation invariance in 3D CNNs. Medical Image Analysis, to appear.
- Technical note: Extension of CERR for computational radiomics: A comprehensive MATLAB platform for reproducible radiomics research. Med. Phys., 45(8):3713–3720, 2018.
- Reproducibility and Prognosis of Quantitative Features Extracted from CT Images. Translational oncology, 7(1):72–87, 2014.
- Roto-translation covariant convolutional networks for medical image analysis. In International Conference on Medical Image Computing and Computer-Assisted Intervention, pages 440–448. Springer, 2018.
- F. Bianconi and A. Fernández. Evaluation of the effects of Gabor filter parameters on texture classification. Pattern Recognition, 40(12):3325–3335, 2007.
- Post-radiochemotherapy PET radiomics in head and neck cancer - the influence of radiomics implementation on the reproducibility of local control tumor models. Radiother. Oncol., 125(3):385–391, 2017.
- N. Chenouard and M. Unser. 3D Steerable Wavelets in Practice. IEEE Transactions on Image Processing, 21(11):4522–4533, 2012.
- The cancer imaging archive (TCIA): maintaining and operating a public information repository. J. Digit. Imaging, 26(6):1045–1057, 2013.
- T. S. Cohen and M. Welling. Group Equivariant Convolutional Networks. CoRR, abs/1602.0, 2016.
- Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD statement. Br. J. Surg., 102(3):148–158, 2015.
- I. Daubechies. Ten lectures on wavelets, volume 61. SIAM, 1992.
- A. Depeursinge. Multi-Scale and Multi-Directional Biomedical Texture Analysis: Finding the Needle in the Haystack. In Biomedical Texture Analysis: Fundamentals, Tools and Challenges, Elsevier-MICCAI Society Book series, pages 29–53. Elsevier, 2017.
- A. Depeursinge and J. Fageot. Biomedical Texture Operators and Aggregation Functions: A Methodological Review and User’s Guide. In Biomedical Texture Analysis: Fundamentals, Tools and Challenges, Elsevier-MICCAI Society Book series, pages 55–94. Elsevier, 2017.
- Fundamentals of Texture Processing for Biomedical Image Analysis: A General Definition and Problem Formulation. In Biomedical Texture Analysis: Fundamentals, Tools and Challenges, Elsevier-MICCAI Society Book series, pages 1–27. Elsevier, 2017a.
- Steerable wavelet machines (SWM): Learning moving frames for texture classification. IEEE Transactions on Image Processing, 26(4), 2017b.
- Rotation Invariance and Directional Sensitivity: Spherical Harmonics versus Radiomics Features. In Machine Learning in Medical Imaging, pages 107–115, Cham, 2018. Springer International Publishing.
- QuantImage: An Online Tool for High-Throughput 3D Radiomics Feature Extraction in PET-CT. In Biomedical Texture Analysis: Fundamentals, Tools and Challenges, Elsevier-MICCAI Society Book series, pages 349–377. Elsevier, 2017a.
- 3–D Solid Texture Classification Using Locally–Oriented Wavelet Transforms. IEEE Transactions on Image Processing, 26(4):1899–1910, 2017b.
- Learning a deep convolutional network for image super-resolution. In D. Fleet, T. Pajdla, B. Schiele, and T. Tuytelaars, editors, Computer Vision – ECCV 2014, pages 184–199, Cham, 2014. Springer International Publishing.
- P. Dutilleux. An Implementation of the “algorithme à trous” to Compute the Wavelet Transform. In J.-M. Combes, A. Grossmann, and P. Tchamitchian, editors, Wavelets, pages 298–304. Springer, Berlin, Heidelberg, 1990.
- Quantitative Image Feature Engine (QIFE): an Open-Source, Modular Engine for 3D Quantitative Feature Extraction from Volumetric Medical Images. Journal of Digital Imaging, pages 1–12, 2017.
- Solid harmonic wavelet scattering: Predicting quantum molecular energy from invariant descriptors of 3D electronic densities. In Advances in Neural Information Processing Systems, pages 6540–6549, 2017.
- Development and evaluation of an open-source software package “CGITA” for quantifying tumor heterogeneity with molecular images. BioMed research international, 2014:248505, 2014.
- Variation in algorithm implementation across radiomics software. J. Med. Imaging, 5(4):044505, 2018.
- The design and use of steerable filters. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13(9):891–906, 1991.
- Characterization of PET/CT images using texture analysis: the past, the present… any future? Eur. J. Nucl. Med. Mol. Imaging, 44(1):151–165, 2017.
- Joint EANM/SNMMI guideline on radiomics in nuclear medicine. Eur. J. Nucl. Med. Mol. Imaging, 2022.
- E. P. Hernandez-Cerdan, P. Isotropic and Steerable Wavelets in N Dimensions. A multiresolution analysis framework. The Insight Journal, 1:1–20, 2016.
- Nuclear medicine and artificial intelligence: Best practices for evaluation (the RELAINCE guidelines). J. Nucl. Med., 2022.
- R. Kakarala and D. Mao. A theory of phase-sensitive rotation invariance with spherical harmonic and moment-based representations. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pages 105–112. IEEE, 2010.
- Radiomics: the bridge between medical imaging and personalized medicine. Nature Reviews Clinical Oncology, 14(12):749–762, 2017.
- K. I. Laws. Rapid Texture Identification. In 24th Annual Technical Symposium, volume 238, pages 376–381. SPIE, 1980.
- Pywavelets: A python package for wavelet analysis. Journal of Open Source Software, 4(36):1237, 2019.
- S. G. Mallat. A Theory for Multiresolution Signal Decomposition: The Wavelet Representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11(7):674–693, 1989.
- Checklist for artificial intelligence in medical imaging (CLAIM): A guide for authors and reviewers. Radiology: Artificial Intelligence, 2(2):e200029, 2020.
- LIFEx: A freeware for radiomic feature calculation in multimodality imaging to accelerate advances in the characterization of tumor heterogeneity. Cancer Res., 78(16):4786–4789, 2018. Petkov and Kruizinga 1997 N. Petkov and P. Kruizinga. Computational models of visual neurons specialised in the detection of periodic and aperiodic oriented visual stimuli: Bar and grating cells. Biological Cybernetics, 76(2):83–96, 1997. Portilla and Simoncelli 2000 J. Portilla and E. P. Simoncelli. A Parametric Texture Model Based on Joint Statistics of Complex Wavelet Coefficients. International Journal of Computer Vision, 40(1):49–70, 2000. Prasanna et al. 2014 P. Prasanna, P. Tiwari, and A. Madabhushi. Co-occurrence of Local Anisotropic Gradient Orientations (CoLlAGe): Distinguishing tumor confounders and molecular subtypes on MRI. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), volume 8675 LNCS, pages 73–80. Springer Verlag, 2014. Qian et al. 2006 Z. Qian, D. N. Metaxas, and L. Axel. Extraction and Tracking of MRI Tagging Sheets Using a 3D Gabor Filter Bank. In 2006 International Conference of the IEEE Engineering in Medicine and Biology Society, pages 711–714. IEEE, 2006. Szczypiński and Klepaczko 2017 P. M. Szczypiński and A. Klepaczko. MaZda – A Framework for Biomedical Image Texture Analysis and Data Exploration. In Biomedical Texture Analysis, pages 315–347. Elsevier, 2017. Tamura et al. 1978 H. Tamura, S. Mori, and T. Yamawaki. Textural Features Corresponding to Visual Perception. IEEE Transactions on Systems, Man and Cybernetics, 8(6):460–473, 1978. Tustison et al. 2010 N. J. Tustison, B. B. Avants, P. A. Cook, Y. Zheng, A. Egan, P. A. Yushkevich, and J. C. Gee. N4ITK: improved N3 bias correction. IEEE Trans. Med. Imaging, 29(6):1310–1320, 2010. Unser 2012 M. Unser. Image Processing I and II. Ecole polytechnique fédérale de Lausanne (EPFL), 2012. Unser and Van De Ville 2010 M. Unser and D. Van De Ville. Wavelet steerability and the higher-order Riesz transform. IEEE Transactions on Image Processing, 19(3):636–652, 2010. Unser et al. 2011 M. Unser, N. Chenouard, and D. Van De Ville. Steerable Pyramids and Tight Wavelet Frames in L2(ℝd)subscript𝐿2superscriptℝ𝑑L_{2}(\mathbb{R}^{d})italic_L start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( blackboard_R start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT ). IEEE Transactions on Image Processing, 20(10):2705–2721, 2011. Vallières et al. 2015a M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. Data from: A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities, 2015a. Vallières et al. 2015b M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Phys. Med. Biol., 60(14):5471–5496, 2015b. van Griethuysen et al. 2017 J. J. M. van Griethuysen, A. Fedorov, C. Parmar, A. Hosny, N. Aucoin, V. Narayan, R. G. H. Beets-Tan, J.-C. Fillion-Robin, S. Pieper, and H. J. W. L. Aerts. Computational radiomics system to decode the radiographic phenotype. Cancer Res., 77(21):e104–e107, 2017. Weiler et al. 2018a M. Weiler, M. Geiger, M. Welling, W. Boomsma, and T. Cohen. 3D steerable CNNs: Learning rotationally equivariant features in volumetric data. In Advances in Neural Information Processing Systems, volume 2018-December, pages 10381–10392. Neural information processing systems foundation, 2018a. Weiler et al. 2018b M. Weiler, F. A. Hamprecht, and M. Storath. Learning Steerable Filters for Rotation Equivariant CNNs. CoRR, abs/1711.0, 2018b. Whybra et al. 2024 P. Whybra, A. Zwanenburg, V. Andrearczyk, R. Schaer, A. P. Apte, A. Ayotte, B. Baheti, S. Bakas, A. Bettinelli, R. Boellaard, L. Boldrini, I. Buvat, G. J. R. Cook, F. Dietsche, N. Dinapoli, H. S. Gabryś, V. Goh, M. Guckenberger, M. Hatt, M. Hosseinzadeh, A. Iyer, J. Lenkowicz, M. A. L. Loutfi, S. Löck, F. Marturano, O. Morin, C. Nioche, F. Orlhac, S. Pati, A. Rahmim, S. M. Rezaeijo, C. G. Rookyard, M. R. Salmanpour, A. Schindele, I. Shiri, E. Spezi, S. Tanadini-Lang, F. Tixier, T. Upadhaya, V. Valentini, J. J. M. van Griethuysen, F. Yousefirizi, H. Zaidi, H. Müller, M. Vallières, and A. Depeursinge. The image biomarker standardization initiative: Standardized convolutional filters for reproducible radiomics and enhanced clinical insights. Radiology, 310(2):e231319, 2024. Winkels and Cohen 2019 M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. N. Petkov and P. Kruizinga. Computational models of visual neurons specialised in the detection of periodic and aperiodic oriented visual stimuli: Bar and grating cells. Biological Cybernetics, 76(2):83–96, 1997. Portilla and Simoncelli 2000 J. Portilla and E. P. Simoncelli. A Parametric Texture Model Based on Joint Statistics of Complex Wavelet Coefficients. International Journal of Computer Vision, 40(1):49–70, 2000. Prasanna et al. 2014 P. Prasanna, P. Tiwari, and A. Madabhushi. Co-occurrence of Local Anisotropic Gradient Orientations (CoLlAGe): Distinguishing tumor confounders and molecular subtypes on MRI. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), volume 8675 LNCS, pages 73–80. Springer Verlag, 2014. Qian et al. 2006 Z. Qian, D. N. Metaxas, and L. Axel. Extraction and Tracking of MRI Tagging Sheets Using a 3D Gabor Filter Bank. In 2006 International Conference of the IEEE Engineering in Medicine and Biology Society, pages 711–714. IEEE, 2006. Szczypiński and Klepaczko 2017 P. M. Szczypiński and A. Klepaczko. MaZda – A Framework for Biomedical Image Texture Analysis and Data Exploration. In Biomedical Texture Analysis, pages 315–347. Elsevier, 2017. Tamura et al. 1978 H. Tamura, S. Mori, and T. Yamawaki. Textural Features Corresponding to Visual Perception. IEEE Transactions on Systems, Man and Cybernetics, 8(6):460–473, 1978. Tustison et al. 2010 N. J. Tustison, B. B. Avants, P. A. Cook, Y. Zheng, A. Egan, P. A. Yushkevich, and J. C. Gee. N4ITK: improved N3 bias correction. IEEE Trans. Med. Imaging, 29(6):1310–1320, 2010. Unser 2012 M. Unser. Image Processing I and II. Ecole polytechnique fédérale de Lausanne (EPFL), 2012. Unser and Van De Ville 2010 M. Unser and D. Van De Ville. Wavelet steerability and the higher-order Riesz transform. IEEE Transactions on Image Processing, 19(3):636–652, 2010. Unser et al. 2011 M. Unser, N. Chenouard, and D. Van De Ville. Steerable Pyramids and Tight Wavelet Frames in L2(ℝd)subscript𝐿2superscriptℝ𝑑L_{2}(\mathbb{R}^{d})italic_L start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( blackboard_R start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT ). IEEE Transactions on Image Processing, 20(10):2705–2721, 2011. Vallières et al. 2015a M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. Data from: A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities, 2015a. Vallières et al. 2015b M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Phys. Med. Biol., 60(14):5471–5496, 2015b. van Griethuysen et al. 2017 J. J. M. van Griethuysen, A. Fedorov, C. Parmar, A. Hosny, N. Aucoin, V. Narayan, R. G. H. Beets-Tan, J.-C. Fillion-Robin, S. Pieper, and H. J. W. L. Aerts. Computational radiomics system to decode the radiographic phenotype. Cancer Res., 77(21):e104–e107, 2017. Weiler et al. 2018a M. Weiler, M. Geiger, M. Welling, W. Boomsma, and T. Cohen. 3D steerable CNNs: Learning rotationally equivariant features in volumetric data. In Advances in Neural Information Processing Systems, volume 2018-December, pages 10381–10392. Neural information processing systems foundation, 2018a. Weiler et al. 2018b M. Weiler, F. A. Hamprecht, and M. Storath. Learning Steerable Filters for Rotation Equivariant CNNs. CoRR, abs/1711.0, 2018b. Whybra et al. 2024 P. Whybra, A. Zwanenburg, V. Andrearczyk, R. Schaer, A. P. Apte, A. Ayotte, B. Baheti, S. Bakas, A. Bettinelli, R. Boellaard, L. Boldrini, I. Buvat, G. J. R. Cook, F. Dietsche, N. Dinapoli, H. S. Gabryś, V. Goh, M. Guckenberger, M. Hatt, M. Hosseinzadeh, A. Iyer, J. Lenkowicz, M. A. L. Loutfi, S. Löck, F. Marturano, O. Morin, C. Nioche, F. Orlhac, S. Pati, A. Rahmim, S. M. Rezaeijo, C. G. Rookyard, M. R. Salmanpour, A. Schindele, I. Shiri, E. Spezi, S. Tanadini-Lang, F. Tixier, T. Upadhaya, V. Valentini, J. J. M. van Griethuysen, F. Yousefirizi, H. Zaidi, H. Müller, M. Vallières, and A. Depeursinge. The image biomarker standardization initiative: Standardized convolutional filters for reproducible radiomics and enhanced clinical insights. Radiology, 310(2):e231319, 2024. Winkels and Cohen 2019 M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. J. Portilla and E. P. Simoncelli. A Parametric Texture Model Based on Joint Statistics of Complex Wavelet Coefficients. International Journal of Computer Vision, 40(1):49–70, 2000. Prasanna et al. 2014 P. Prasanna, P. Tiwari, and A. Madabhushi. Co-occurrence of Local Anisotropic Gradient Orientations (CoLlAGe): Distinguishing tumor confounders and molecular subtypes on MRI. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), volume 8675 LNCS, pages 73–80. Springer Verlag, 2014. Qian et al. 2006 Z. Qian, D. N. Metaxas, and L. Axel. Extraction and Tracking of MRI Tagging Sheets Using a 3D Gabor Filter Bank. In 2006 International Conference of the IEEE Engineering in Medicine and Biology Society, pages 711–714. IEEE, 2006. Szczypiński and Klepaczko 2017 P. M. Szczypiński and A. Klepaczko. MaZda – A Framework for Biomedical Image Texture Analysis and Data Exploration. In Biomedical Texture Analysis, pages 315–347. Elsevier, 2017. Tamura et al. 1978 H. Tamura, S. Mori, and T. Yamawaki. Textural Features Corresponding to Visual Perception. IEEE Transactions on Systems, Man and Cybernetics, 8(6):460–473, 1978. Tustison et al. 2010 N. J. Tustison, B. B. Avants, P. A. Cook, Y. Zheng, A. Egan, P. A. Yushkevich, and J. C. Gee. N4ITK: improved N3 bias correction. IEEE Trans. Med. Imaging, 29(6):1310–1320, 2010. Unser 2012 M. Unser. Image Processing I and II. Ecole polytechnique fédérale de Lausanne (EPFL), 2012. Unser and Van De Ville 2010 M. Unser and D. Van De Ville. Wavelet steerability and the higher-order Riesz transform. IEEE Transactions on Image Processing, 19(3):636–652, 2010. Unser et al. 2011 M. Unser, N. Chenouard, and D. Van De Ville. Steerable Pyramids and Tight Wavelet Frames in L2(ℝd)subscript𝐿2superscriptℝ𝑑L_{2}(\mathbb{R}^{d})italic_L start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( blackboard_R start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT ). IEEE Transactions on Image Processing, 20(10):2705–2721, 2011. Vallières et al. 2015a M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. Data from: A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities, 2015a. Vallières et al. 2015b M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Phys. Med. Biol., 60(14):5471–5496, 2015b. van Griethuysen et al. 2017 J. J. M. van Griethuysen, A. Fedorov, C. Parmar, A. Hosny, N. Aucoin, V. Narayan, R. G. H. Beets-Tan, J.-C. Fillion-Robin, S. Pieper, and H. J. W. L. Aerts. Computational radiomics system to decode the radiographic phenotype. Cancer Res., 77(21):e104–e107, 2017. Weiler et al. 2018a M. Weiler, M. Geiger, M. Welling, W. Boomsma, and T. Cohen. 3D steerable CNNs: Learning rotationally equivariant features in volumetric data. In Advances in Neural Information Processing Systems, volume 2018-December, pages 10381–10392. Neural information processing systems foundation, 2018a. Weiler et al. 2018b M. Weiler, F. A. Hamprecht, and M. Storath. Learning Steerable Filters for Rotation Equivariant CNNs. CoRR, abs/1711.0, 2018b. Whybra et al. 2024 P. Whybra, A. Zwanenburg, V. Andrearczyk, R. Schaer, A. P. Apte, A. Ayotte, B. Baheti, S. Bakas, A. Bettinelli, R. Boellaard, L. Boldrini, I. Buvat, G. J. R. Cook, F. Dietsche, N. Dinapoli, H. S. Gabryś, V. Goh, M. Guckenberger, M. Hatt, M. Hosseinzadeh, A. Iyer, J. Lenkowicz, M. A. L. Loutfi, S. Löck, F. Marturano, O. Morin, C. Nioche, F. Orlhac, S. Pati, A. Rahmim, S. M. Rezaeijo, C. G. Rookyard, M. R. Salmanpour, A. Schindele, I. Shiri, E. Spezi, S. Tanadini-Lang, F. Tixier, T. Upadhaya, V. Valentini, J. J. M. van Griethuysen, F. Yousefirizi, H. Zaidi, H. Müller, M. Vallières, and A. Depeursinge. The image biomarker standardization initiative: Standardized convolutional filters for reproducible radiomics and enhanced clinical insights. Radiology, 310(2):e231319, 2024. Winkels and Cohen 2019 M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. P. Prasanna, P. Tiwari, and A. Madabhushi. Co-occurrence of Local Anisotropic Gradient Orientations (CoLlAGe): Distinguishing tumor confounders and molecular subtypes on MRI. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), volume 8675 LNCS, pages 73–80. Springer Verlag, 2014. Qian et al. 2006 Z. Qian, D. N. Metaxas, and L. Axel. Extraction and Tracking of MRI Tagging Sheets Using a 3D Gabor Filter Bank. In 2006 International Conference of the IEEE Engineering in Medicine and Biology Society, pages 711–714. IEEE, 2006. Szczypiński and Klepaczko 2017 P. M. Szczypiński and A. Klepaczko. MaZda – A Framework for Biomedical Image Texture Analysis and Data Exploration. In Biomedical Texture Analysis, pages 315–347. Elsevier, 2017. Tamura et al. 1978 H. Tamura, S. Mori, and T. Yamawaki. Textural Features Corresponding to Visual Perception. IEEE Transactions on Systems, Man and Cybernetics, 8(6):460–473, 1978. Tustison et al. 2010 N. J. Tustison, B. B. Avants, P. A. Cook, Y. Zheng, A. Egan, P. A. Yushkevich, and J. C. Gee. N4ITK: improved N3 bias correction. IEEE Trans. Med. Imaging, 29(6):1310–1320, 2010. Unser 2012 M. Unser. Image Processing I and II. Ecole polytechnique fédérale de Lausanne (EPFL), 2012. Unser and Van De Ville 2010 M. Unser and D. Van De Ville. Wavelet steerability and the higher-order Riesz transform. IEEE Transactions on Image Processing, 19(3):636–652, 2010. Unser et al. 2011 M. Unser, N. Chenouard, and D. Van De Ville. Steerable Pyramids and Tight Wavelet Frames in L2(ℝd)subscript𝐿2superscriptℝ𝑑L_{2}(\mathbb{R}^{d})italic_L start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( blackboard_R start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT ). IEEE Transactions on Image Processing, 20(10):2705–2721, 2011. Vallières et al. 2015a M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. Data from: A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities, 2015a. Vallières et al. 2015b M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Phys. Med. Biol., 60(14):5471–5496, 2015b. van Griethuysen et al. 2017 J. J. M. van Griethuysen, A. Fedorov, C. Parmar, A. Hosny, N. Aucoin, V. Narayan, R. G. H. Beets-Tan, J.-C. Fillion-Robin, S. Pieper, and H. J. W. L. Aerts. Computational radiomics system to decode the radiographic phenotype. Cancer Res., 77(21):e104–e107, 2017. Weiler et al. 2018a M. Weiler, M. Geiger, M. Welling, W. Boomsma, and T. Cohen. 3D steerable CNNs: Learning rotationally equivariant features in volumetric data. In Advances in Neural Information Processing Systems, volume 2018-December, pages 10381–10392. Neural information processing systems foundation, 2018a. Weiler et al. 2018b M. Weiler, F. A. Hamprecht, and M. Storath. Learning Steerable Filters for Rotation Equivariant CNNs. CoRR, abs/1711.0, 2018b. Whybra et al. 2024 P. Whybra, A. Zwanenburg, V. Andrearczyk, R. Schaer, A. P. Apte, A. Ayotte, B. Baheti, S. Bakas, A. Bettinelli, R. Boellaard, L. Boldrini, I. Buvat, G. J. R. Cook, F. Dietsche, N. Dinapoli, H. S. Gabryś, V. Goh, M. Guckenberger, M. Hatt, M. Hosseinzadeh, A. Iyer, J. Lenkowicz, M. A. L. Loutfi, S. Löck, F. Marturano, O. Morin, C. Nioche, F. Orlhac, S. Pati, A. Rahmim, S. M. Rezaeijo, C. G. Rookyard, M. R. Salmanpour, A. Schindele, I. Shiri, E. Spezi, S. Tanadini-Lang, F. Tixier, T. Upadhaya, V. Valentini, J. J. M. van Griethuysen, F. Yousefirizi, H. Zaidi, H. Müller, M. Vallières, and A. Depeursinge. The image biomarker standardization initiative: Standardized convolutional filters for reproducible radiomics and enhanced clinical insights. Radiology, 310(2):e231319, 2024. Winkels and Cohen 2019 M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. Z. Qian, D. N. Metaxas, and L. Axel. Extraction and Tracking of MRI Tagging Sheets Using a 3D Gabor Filter Bank. In 2006 International Conference of the IEEE Engineering in Medicine and Biology Society, pages 711–714. IEEE, 2006. Szczypiński and Klepaczko 2017 P. M. Szczypiński and A. Klepaczko. MaZda – A Framework for Biomedical Image Texture Analysis and Data Exploration. In Biomedical Texture Analysis, pages 315–347. Elsevier, 2017. Tamura et al. 1978 H. Tamura, S. Mori, and T. Yamawaki. Textural Features Corresponding to Visual Perception. IEEE Transactions on Systems, Man and Cybernetics, 8(6):460–473, 1978. Tustison et al. 2010 N. J. Tustison, B. B. Avants, P. A. Cook, Y. Zheng, A. Egan, P. A. Yushkevich, and J. C. Gee. N4ITK: improved N3 bias correction. IEEE Trans. Med. Imaging, 29(6):1310–1320, 2010. Unser 2012 M. Unser. Image Processing I and II. Ecole polytechnique fédérale de Lausanne (EPFL), 2012. Unser and Van De Ville 2010 M. Unser and D. Van De Ville. Wavelet steerability and the higher-order Riesz transform. IEEE Transactions on Image Processing, 19(3):636–652, 2010. Unser et al. 2011 M. Unser, N. Chenouard, and D. Van De Ville. Steerable Pyramids and Tight Wavelet Frames in L2(ℝd)subscript𝐿2superscriptℝ𝑑L_{2}(\mathbb{R}^{d})italic_L start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( blackboard_R start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT ). IEEE Transactions on Image Processing, 20(10):2705–2721, 2011. Vallières et al. 2015a M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. Data from: A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities, 2015a. Vallières et al. 2015b M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Phys. Med. Biol., 60(14):5471–5496, 2015b. van Griethuysen et al. 2017 J. J. M. van Griethuysen, A. Fedorov, C. Parmar, A. Hosny, N. Aucoin, V. Narayan, R. G. H. Beets-Tan, J.-C. Fillion-Robin, S. Pieper, and H. J. W. L. Aerts. Computational radiomics system to decode the radiographic phenotype. Cancer Res., 77(21):e104–e107, 2017. Weiler et al. 2018a M. Weiler, M. Geiger, M. Welling, W. Boomsma, and T. Cohen. 3D steerable CNNs: Learning rotationally equivariant features in volumetric data. In Advances in Neural Information Processing Systems, volume 2018-December, pages 10381–10392. Neural information processing systems foundation, 2018a. Weiler et al. 2018b M. Weiler, F. A. Hamprecht, and M. Storath. Learning Steerable Filters for Rotation Equivariant CNNs. CoRR, abs/1711.0, 2018b. Whybra et al. 2024 P. Whybra, A. Zwanenburg, V. Andrearczyk, R. Schaer, A. P. Apte, A. Ayotte, B. Baheti, S. Bakas, A. Bettinelli, R. Boellaard, L. Boldrini, I. Buvat, G. J. R. Cook, F. Dietsche, N. Dinapoli, H. S. Gabryś, V. Goh, M. Guckenberger, M. Hatt, M. Hosseinzadeh, A. Iyer, J. Lenkowicz, M. A. L. Loutfi, S. Löck, F. Marturano, O. Morin, C. Nioche, F. Orlhac, S. Pati, A. Rahmim, S. M. Rezaeijo, C. G. Rookyard, M. R. Salmanpour, A. Schindele, I. Shiri, E. Spezi, S. Tanadini-Lang, F. Tixier, T. Upadhaya, V. Valentini, J. J. M. van Griethuysen, F. Yousefirizi, H. Zaidi, H. Müller, M. Vallières, and A. Depeursinge. The image biomarker standardization initiative: Standardized convolutional filters for reproducible radiomics and enhanced clinical insights. Radiology, 310(2):e231319, 2024. Winkels and Cohen 2019 M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. P. M. Szczypiński and A. Klepaczko. MaZda – A Framework for Biomedical Image Texture Analysis and Data Exploration. In Biomedical Texture Analysis, pages 315–347. Elsevier, 2017. Tamura et al. 1978 H. Tamura, S. Mori, and T. Yamawaki. Textural Features Corresponding to Visual Perception. IEEE Transactions on Systems, Man and Cybernetics, 8(6):460–473, 1978. Tustison et al. 2010 N. J. Tustison, B. B. Avants, P. A. Cook, Y. Zheng, A. Egan, P. A. Yushkevich, and J. C. Gee. N4ITK: improved N3 bias correction. IEEE Trans. Med. Imaging, 29(6):1310–1320, 2010. Unser 2012 M. Unser. Image Processing I and II. Ecole polytechnique fédérale de Lausanne (EPFL), 2012. Unser and Van De Ville 2010 M. Unser and D. Van De Ville. Wavelet steerability and the higher-order Riesz transform. IEEE Transactions on Image Processing, 19(3):636–652, 2010. Unser et al. 2011 M. Unser, N. Chenouard, and D. Van De Ville. Steerable Pyramids and Tight Wavelet Frames in L2(ℝd)subscript𝐿2superscriptℝ𝑑L_{2}(\mathbb{R}^{d})italic_L start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( blackboard_R start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT ). IEEE Transactions on Image Processing, 20(10):2705–2721, 2011. Vallières et al. 2015a M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. Data from: A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities, 2015a. Vallières et al. 2015b M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Phys. Med. Biol., 60(14):5471–5496, 2015b. van Griethuysen et al. 2017 J. J. M. van Griethuysen, A. Fedorov, C. Parmar, A. Hosny, N. Aucoin, V. Narayan, R. G. H. Beets-Tan, J.-C. Fillion-Robin, S. Pieper, and H. J. W. L. Aerts. Computational radiomics system to decode the radiographic phenotype. Cancer Res., 77(21):e104–e107, 2017. Weiler et al. 2018a M. Weiler, M. Geiger, M. Welling, W. Boomsma, and T. Cohen. 3D steerable CNNs: Learning rotationally equivariant features in volumetric data. In Advances in Neural Information Processing Systems, volume 2018-December, pages 10381–10392. Neural information processing systems foundation, 2018a. Weiler et al. 2018b M. Weiler, F. A. Hamprecht, and M. Storath. Learning Steerable Filters for Rotation Equivariant CNNs. CoRR, abs/1711.0, 2018b. Whybra et al. 2024 P. Whybra, A. Zwanenburg, V. Andrearczyk, R. Schaer, A. P. Apte, A. Ayotte, B. Baheti, S. Bakas, A. Bettinelli, R. Boellaard, L. Boldrini, I. Buvat, G. J. R. Cook, F. Dietsche, N. Dinapoli, H. S. Gabryś, V. Goh, M. Guckenberger, M. Hatt, M. Hosseinzadeh, A. Iyer, J. Lenkowicz, M. A. L. Loutfi, S. Löck, F. Marturano, O. Morin, C. Nioche, F. Orlhac, S. Pati, A. Rahmim, S. M. Rezaeijo, C. G. Rookyard, M. R. Salmanpour, A. Schindele, I. Shiri, E. Spezi, S. Tanadini-Lang, F. Tixier, T. Upadhaya, V. Valentini, J. J. M. van Griethuysen, F. Yousefirizi, H. Zaidi, H. Müller, M. Vallières, and A. Depeursinge. The image biomarker standardization initiative: Standardized convolutional filters for reproducible radiomics and enhanced clinical insights. Radiology, 310(2):e231319, 2024. Winkels and Cohen 2019 M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. H. Tamura, S. Mori, and T. Yamawaki. Textural Features Corresponding to Visual Perception. IEEE Transactions on Systems, Man and Cybernetics, 8(6):460–473, 1978. Tustison et al. 2010 N. J. Tustison, B. B. Avants, P. A. Cook, Y. Zheng, A. Egan, P. A. Yushkevich, and J. C. Gee. N4ITK: improved N3 bias correction. IEEE Trans. Med. Imaging, 29(6):1310–1320, 2010. Unser 2012 M. Unser. Image Processing I and II. Ecole polytechnique fédérale de Lausanne (EPFL), 2012. Unser and Van De Ville 2010 M. Unser and D. Van De Ville. Wavelet steerability and the higher-order Riesz transform. IEEE Transactions on Image Processing, 19(3):636–652, 2010. Unser et al. 2011 M. Unser, N. Chenouard, and D. Van De Ville. Steerable Pyramids and Tight Wavelet Frames in L2(ℝd)subscript𝐿2superscriptℝ𝑑L_{2}(\mathbb{R}^{d})italic_L start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( blackboard_R start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT ). IEEE Transactions on Image Processing, 20(10):2705–2721, 2011. Vallières et al. 2015a M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. Data from: A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities, 2015a. Vallières et al. 2015b M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Phys. Med. Biol., 60(14):5471–5496, 2015b. van Griethuysen et al. 2017 J. J. M. van Griethuysen, A. Fedorov, C. Parmar, A. Hosny, N. Aucoin, V. Narayan, R. G. H. Beets-Tan, J.-C. Fillion-Robin, S. Pieper, and H. J. W. L. Aerts. Computational radiomics system to decode the radiographic phenotype. Cancer Res., 77(21):e104–e107, 2017. Weiler et al. 2018a M. Weiler, M. Geiger, M. Welling, W. Boomsma, and T. Cohen. 3D steerable CNNs: Learning rotationally equivariant features in volumetric data. In Advances in Neural Information Processing Systems, volume 2018-December, pages 10381–10392. Neural information processing systems foundation, 2018a. Weiler et al. 2018b M. Weiler, F. A. Hamprecht, and M. Storath. Learning Steerable Filters for Rotation Equivariant CNNs. CoRR, abs/1711.0, 2018b. Whybra et al. 2024 P. Whybra, A. Zwanenburg, V. Andrearczyk, R. Schaer, A. P. Apte, A. Ayotte, B. Baheti, S. Bakas, A. Bettinelli, R. Boellaard, L. Boldrini, I. Buvat, G. J. R. Cook, F. Dietsche, N. Dinapoli, H. S. Gabryś, V. Goh, M. Guckenberger, M. Hatt, M. Hosseinzadeh, A. Iyer, J. Lenkowicz, M. A. L. Loutfi, S. Löck, F. Marturano, O. Morin, C. Nioche, F. Orlhac, S. Pati, A. Rahmim, S. M. Rezaeijo, C. G. Rookyard, M. R. Salmanpour, A. Schindele, I. Shiri, E. Spezi, S. Tanadini-Lang, F. Tixier, T. Upadhaya, V. Valentini, J. J. M. van Griethuysen, F. Yousefirizi, H. Zaidi, H. Müller, M. Vallières, and A. Depeursinge. The image biomarker standardization initiative: Standardized convolutional filters for reproducible radiomics and enhanced clinical insights. Radiology, 310(2):e231319, 2024. Winkels and Cohen 2019 M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. N. J. Tustison, B. B. Avants, P. A. Cook, Y. Zheng, A. Egan, P. A. Yushkevich, and J. C. Gee. N4ITK: improved N3 bias correction. IEEE Trans. Med. Imaging, 29(6):1310–1320, 2010. Unser 2012 M. Unser. Image Processing I and II. Ecole polytechnique fédérale de Lausanne (EPFL), 2012. Unser and Van De Ville 2010 M. Unser and D. Van De Ville. Wavelet steerability and the higher-order Riesz transform. IEEE Transactions on Image Processing, 19(3):636–652, 2010. Unser et al. 2011 M. Unser, N. Chenouard, and D. Van De Ville. Steerable Pyramids and Tight Wavelet Frames in L2(ℝd)subscript𝐿2superscriptℝ𝑑L_{2}(\mathbb{R}^{d})italic_L start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( blackboard_R start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT ). IEEE Transactions on Image Processing, 20(10):2705–2721, 2011. Vallières et al. 2015a M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. Data from: A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities, 2015a. Vallières et al. 2015b M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Phys. Med. Biol., 60(14):5471–5496, 2015b. van Griethuysen et al. 2017 J. J. M. van Griethuysen, A. Fedorov, C. Parmar, A. Hosny, N. Aucoin, V. Narayan, R. G. H. Beets-Tan, J.-C. Fillion-Robin, S. Pieper, and H. J. W. L. Aerts. Computational radiomics system to decode the radiographic phenotype. Cancer Res., 77(21):e104–e107, 2017. Weiler et al. 2018a M. Weiler, M. Geiger, M. Welling, W. Boomsma, and T. Cohen. 3D steerable CNNs: Learning rotationally equivariant features in volumetric data. In Advances in Neural Information Processing Systems, volume 2018-December, pages 10381–10392. Neural information processing systems foundation, 2018a. Weiler et al. 2018b M. Weiler, F. A. Hamprecht, and M. Storath. Learning Steerable Filters for Rotation Equivariant CNNs. CoRR, abs/1711.0, 2018b. Whybra et al. 2024 P. Whybra, A. Zwanenburg, V. Andrearczyk, R. Schaer, A. P. Apte, A. Ayotte, B. Baheti, S. Bakas, A. Bettinelli, R. Boellaard, L. Boldrini, I. Buvat, G. J. R. Cook, F. Dietsche, N. Dinapoli, H. S. Gabryś, V. Goh, M. Guckenberger, M. Hatt, M. Hosseinzadeh, A. Iyer, J. Lenkowicz, M. A. L. Loutfi, S. Löck, F. Marturano, O. Morin, C. Nioche, F. Orlhac, S. Pati, A. Rahmim, S. M. Rezaeijo, C. G. Rookyard, M. R. Salmanpour, A. Schindele, I. Shiri, E. Spezi, S. Tanadini-Lang, F. Tixier, T. Upadhaya, V. Valentini, J. J. M. van Griethuysen, F. Yousefirizi, H. Zaidi, H. Müller, M. Vallières, and A. Depeursinge. The image biomarker standardization initiative: Standardized convolutional filters for reproducible radiomics and enhanced clinical insights. Radiology, 310(2):e231319, 2024. Winkels and Cohen 2019 M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. M. Unser. Image Processing I and II. Ecole polytechnique fédérale de Lausanne (EPFL), 2012. Unser and Van De Ville 2010 M. Unser and D. Van De Ville. Wavelet steerability and the higher-order Riesz transform. IEEE Transactions on Image Processing, 19(3):636–652, 2010. Unser et al. 2011 M. Unser, N. Chenouard, and D. Van De Ville. Steerable Pyramids and Tight Wavelet Frames in L2(ℝd)subscript𝐿2superscriptℝ𝑑L_{2}(\mathbb{R}^{d})italic_L start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( blackboard_R start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT ). IEEE Transactions on Image Processing, 20(10):2705–2721, 2011. Vallières et al. 2015a M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. Data from: A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities, 2015a. Vallières et al. 2015b M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Phys. Med. Biol., 60(14):5471–5496, 2015b. van Griethuysen et al. 2017 J. J. M. van Griethuysen, A. Fedorov, C. Parmar, A. Hosny, N. Aucoin, V. Narayan, R. G. H. Beets-Tan, J.-C. Fillion-Robin, S. Pieper, and H. J. W. L. Aerts. Computational radiomics system to decode the radiographic phenotype. Cancer Res., 77(21):e104–e107, 2017. Weiler et al. 2018a M. Weiler, M. Geiger, M. Welling, W. Boomsma, and T. Cohen. 3D steerable CNNs: Learning rotationally equivariant features in volumetric data. In Advances in Neural Information Processing Systems, volume 2018-December, pages 10381–10392. Neural information processing systems foundation, 2018a. Weiler et al. 2018b M. Weiler, F. A. Hamprecht, and M. Storath. Learning Steerable Filters for Rotation Equivariant CNNs. CoRR, abs/1711.0, 2018b. Whybra et al. 2024 P. Whybra, A. Zwanenburg, V. Andrearczyk, R. Schaer, A. P. Apte, A. Ayotte, B. Baheti, S. Bakas, A. Bettinelli, R. Boellaard, L. Boldrini, I. Buvat, G. J. R. Cook, F. Dietsche, N. Dinapoli, H. S. Gabryś, V. Goh, M. Guckenberger, M. Hatt, M. Hosseinzadeh, A. Iyer, J. Lenkowicz, M. A. L. Loutfi, S. Löck, F. Marturano, O. Morin, C. Nioche, F. Orlhac, S. Pati, A. Rahmim, S. M. Rezaeijo, C. G. Rookyard, M. R. Salmanpour, A. Schindele, I. Shiri, E. Spezi, S. Tanadini-Lang, F. Tixier, T. Upadhaya, V. Valentini, J. J. M. van Griethuysen, F. Yousefirizi, H. Zaidi, H. Müller, M. Vallières, and A. Depeursinge. The image biomarker standardization initiative: Standardized convolutional filters for reproducible radiomics and enhanced clinical insights. Radiology, 310(2):e231319, 2024. Winkels and Cohen 2019 M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. M. Unser and D. Van De Ville. Wavelet steerability and the higher-order Riesz transform. IEEE Transactions on Image Processing, 19(3):636–652, 2010. Unser et al. 2011 M. Unser, N. Chenouard, and D. Van De Ville. Steerable Pyramids and Tight Wavelet Frames in L2(ℝd)subscript𝐿2superscriptℝ𝑑L_{2}(\mathbb{R}^{d})italic_L start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( blackboard_R start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT ). IEEE Transactions on Image Processing, 20(10):2705–2721, 2011. Vallières et al. 2015a M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. Data from: A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities, 2015a. Vallières et al. 2015b M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Phys. Med. Biol., 60(14):5471–5496, 2015b. van Griethuysen et al. 2017 J. J. M. van Griethuysen, A. Fedorov, C. Parmar, A. Hosny, N. Aucoin, V. Narayan, R. G. H. Beets-Tan, J.-C. Fillion-Robin, S. Pieper, and H. J. W. L. Aerts. Computational radiomics system to decode the radiographic phenotype. Cancer Res., 77(21):e104–e107, 2017. Weiler et al. 2018a M. Weiler, M. Geiger, M. Welling, W. Boomsma, and T. Cohen. 3D steerable CNNs: Learning rotationally equivariant features in volumetric data. In Advances in Neural Information Processing Systems, volume 2018-December, pages 10381–10392. Neural information processing systems foundation, 2018a. Weiler et al. 2018b M. Weiler, F. A. Hamprecht, and M. Storath. Learning Steerable Filters for Rotation Equivariant CNNs. CoRR, abs/1711.0, 2018b. Whybra et al. 2024 P. Whybra, A. Zwanenburg, V. Andrearczyk, R. Schaer, A. P. Apte, A. Ayotte, B. Baheti, S. Bakas, A. Bettinelli, R. Boellaard, L. Boldrini, I. Buvat, G. J. R. Cook, F. Dietsche, N. Dinapoli, H. S. Gabryś, V. Goh, M. Guckenberger, M. Hatt, M. Hosseinzadeh, A. Iyer, J. Lenkowicz, M. A. L. Loutfi, S. Löck, F. Marturano, O. Morin, C. Nioche, F. Orlhac, S. Pati, A. Rahmim, S. M. Rezaeijo, C. G. Rookyard, M. R. Salmanpour, A. Schindele, I. Shiri, E. Spezi, S. Tanadini-Lang, F. Tixier, T. Upadhaya, V. Valentini, J. J. M. van Griethuysen, F. Yousefirizi, H. Zaidi, H. Müller, M. Vallières, and A. Depeursinge. The image biomarker standardization initiative: Standardized convolutional filters for reproducible radiomics and enhanced clinical insights. Radiology, 310(2):e231319, 2024. Winkels and Cohen 2019 M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. M. Unser, N. Chenouard, and D. Van De Ville. Steerable Pyramids and Tight Wavelet Frames in L2(ℝd)subscript𝐿2superscriptℝ𝑑L_{2}(\mathbb{R}^{d})italic_L start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( blackboard_R start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT ). IEEE Transactions on Image Processing, 20(10):2705–2721, 2011. Vallières et al. 2015a M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. Data from: A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities, 2015a. Vallières et al. 2015b M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Phys. Med. Biol., 60(14):5471–5496, 2015b. van Griethuysen et al. 2017 J. J. M. van Griethuysen, A. Fedorov, C. Parmar, A. Hosny, N. Aucoin, V. Narayan, R. G. H. Beets-Tan, J.-C. Fillion-Robin, S. Pieper, and H. J. W. L. Aerts. Computational radiomics system to decode the radiographic phenotype. Cancer Res., 77(21):e104–e107, 2017. Weiler et al. 2018a M. Weiler, M. Geiger, M. Welling, W. Boomsma, and T. Cohen. 3D steerable CNNs: Learning rotationally equivariant features in volumetric data. In Advances in Neural Information Processing Systems, volume 2018-December, pages 10381–10392. Neural information processing systems foundation, 2018a. Weiler et al. 2018b M. Weiler, F. A. Hamprecht, and M. Storath. Learning Steerable Filters for Rotation Equivariant CNNs. CoRR, abs/1711.0, 2018b. Whybra et al. 2024 P. Whybra, A. Zwanenburg, V. Andrearczyk, R. Schaer, A. P. Apte, A. Ayotte, B. Baheti, S. Bakas, A. Bettinelli, R. Boellaard, L. Boldrini, I. Buvat, G. J. R. Cook, F. Dietsche, N. Dinapoli, H. S. Gabryś, V. Goh, M. Guckenberger, M. Hatt, M. Hosseinzadeh, A. Iyer, J. Lenkowicz, M. A. L. Loutfi, S. Löck, F. Marturano, O. Morin, C. Nioche, F. Orlhac, S. Pati, A. Rahmim, S. M. Rezaeijo, C. G. Rookyard, M. R. Salmanpour, A. Schindele, I. Shiri, E. Spezi, S. Tanadini-Lang, F. Tixier, T. Upadhaya, V. Valentini, J. J. M. van Griethuysen, F. Yousefirizi, H. Zaidi, H. Müller, M. Vallières, and A. Depeursinge. The image biomarker standardization initiative: Standardized convolutional filters for reproducible radiomics and enhanced clinical insights. Radiology, 310(2):e231319, 2024. Winkels and Cohen 2019 M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. Data from: A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities, 2015a. Vallières et al. 2015b M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Phys. Med. Biol., 60(14):5471–5496, 2015b. van Griethuysen et al. 2017 J. J. M. van Griethuysen, A. Fedorov, C. Parmar, A. Hosny, N. Aucoin, V. Narayan, R. G. H. Beets-Tan, J.-C. Fillion-Robin, S. Pieper, and H. J. W. L. Aerts. Computational radiomics system to decode the radiographic phenotype. Cancer Res., 77(21):e104–e107, 2017. Weiler et al. 2018a M. Weiler, M. Geiger, M. Welling, W. Boomsma, and T. Cohen. 3D steerable CNNs: Learning rotationally equivariant features in volumetric data. In Advances in Neural Information Processing Systems, volume 2018-December, pages 10381–10392. Neural information processing systems foundation, 2018a. Weiler et al. 2018b M. Weiler, F. A. Hamprecht, and M. Storath. Learning Steerable Filters for Rotation Equivariant CNNs. CoRR, abs/1711.0, 2018b. Whybra et al. 2024 P. Whybra, A. Zwanenburg, V. Andrearczyk, R. Schaer, A. P. Apte, A. Ayotte, B. Baheti, S. Bakas, A. Bettinelli, R. Boellaard, L. Boldrini, I. Buvat, G. J. R. Cook, F. Dietsche, N. Dinapoli, H. S. Gabryś, V. Goh, M. Guckenberger, M. Hatt, M. Hosseinzadeh, A. Iyer, J. Lenkowicz, M. A. L. Loutfi, S. Löck, F. Marturano, O. Morin, C. Nioche, F. Orlhac, S. Pati, A. Rahmim, S. M. Rezaeijo, C. G. Rookyard, M. R. Salmanpour, A. Schindele, I. Shiri, E. Spezi, S. Tanadini-Lang, F. Tixier, T. Upadhaya, V. Valentini, J. J. M. van Griethuysen, F. Yousefirizi, H. Zaidi, H. Müller, M. Vallières, and A. Depeursinge. The image biomarker standardization initiative: Standardized convolutional filters for reproducible radiomics and enhanced clinical insights. Radiology, 310(2):e231319, 2024. Winkels and Cohen 2019 M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Phys. Med. Biol., 60(14):5471–5496, 2015b. van Griethuysen et al. 2017 J. J. M. van Griethuysen, A. Fedorov, C. Parmar, A. Hosny, N. Aucoin, V. Narayan, R. G. H. Beets-Tan, J.-C. Fillion-Robin, S. Pieper, and H. J. W. L. Aerts. Computational radiomics system to decode the radiographic phenotype. Cancer Res., 77(21):e104–e107, 2017. Weiler et al. 2018a M. Weiler, M. Geiger, M. Welling, W. Boomsma, and T. Cohen. 3D steerable CNNs: Learning rotationally equivariant features in volumetric data. In Advances in Neural Information Processing Systems, volume 2018-December, pages 10381–10392. Neural information processing systems foundation, 2018a. Weiler et al. 2018b M. Weiler, F. A. Hamprecht, and M. Storath. Learning Steerable Filters for Rotation Equivariant CNNs. CoRR, abs/1711.0, 2018b. Whybra et al. 2024 P. Whybra, A. Zwanenburg, V. Andrearczyk, R. Schaer, A. P. Apte, A. Ayotte, B. Baheti, S. Bakas, A. Bettinelli, R. Boellaard, L. Boldrini, I. Buvat, G. J. R. Cook, F. Dietsche, N. Dinapoli, H. S. Gabryś, V. Goh, M. Guckenberger, M. Hatt, M. Hosseinzadeh, A. Iyer, J. Lenkowicz, M. A. L. Loutfi, S. Löck, F. Marturano, O. Morin, C. Nioche, F. Orlhac, S. Pati, A. Rahmim, S. M. Rezaeijo, C. G. Rookyard, M. R. Salmanpour, A. Schindele, I. Shiri, E. Spezi, S. Tanadini-Lang, F. Tixier, T. Upadhaya, V. Valentini, J. J. M. van Griethuysen, F. Yousefirizi, H. Zaidi, H. Müller, M. Vallières, and A. Depeursinge. The image biomarker standardization initiative: Standardized convolutional filters for reproducible radiomics and enhanced clinical insights. Radiology, 310(2):e231319, 2024. Winkels and Cohen 2019 M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. J. J. M. van Griethuysen, A. Fedorov, C. Parmar, A. Hosny, N. Aucoin, V. Narayan, R. G. H. Beets-Tan, J.-C. Fillion-Robin, S. Pieper, and H. J. W. L. Aerts. Computational radiomics system to decode the radiographic phenotype. Cancer Res., 77(21):e104–e107, 2017. Weiler et al. 2018a M. Weiler, M. Geiger, M. Welling, W. Boomsma, and T. Cohen. 3D steerable CNNs: Learning rotationally equivariant features in volumetric data. In Advances in Neural Information Processing Systems, volume 2018-December, pages 10381–10392. Neural information processing systems foundation, 2018a. Weiler et al. 2018b M. Weiler, F. A. Hamprecht, and M. Storath. Learning Steerable Filters for Rotation Equivariant CNNs. CoRR, abs/1711.0, 2018b. Whybra et al. 2024 P. Whybra, A. Zwanenburg, V. Andrearczyk, R. Schaer, A. P. Apte, A. Ayotte, B. Baheti, S. Bakas, A. Bettinelli, R. Boellaard, L. Boldrini, I. Buvat, G. J. R. Cook, F. Dietsche, N. Dinapoli, H. S. Gabryś, V. Goh, M. Guckenberger, M. Hatt, M. Hosseinzadeh, A. Iyer, J. Lenkowicz, M. A. L. Loutfi, S. Löck, F. Marturano, O. Morin, C. Nioche, F. Orlhac, S. Pati, A. Rahmim, S. M. Rezaeijo, C. G. Rookyard, M. R. Salmanpour, A. Schindele, I. Shiri, E. Spezi, S. Tanadini-Lang, F. Tixier, T. Upadhaya, V. Valentini, J. J. M. van Griethuysen, F. Yousefirizi, H. Zaidi, H. Müller, M. Vallières, and A. Depeursinge. The image biomarker standardization initiative: Standardized convolutional filters for reproducible radiomics and enhanced clinical insights. Radiology, 310(2):e231319, 2024. Winkels and Cohen 2019 M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. M. Weiler, M. Geiger, M. Welling, W. Boomsma, and T. Cohen. 3D steerable CNNs: Learning rotationally equivariant features in volumetric data. In Advances in Neural Information Processing Systems, volume 2018-December, pages 10381–10392. Neural information processing systems foundation, 2018a. Weiler et al. 2018b M. Weiler, F. A. Hamprecht, and M. Storath. Learning Steerable Filters for Rotation Equivariant CNNs. CoRR, abs/1711.0, 2018b. Whybra et al. 2024 P. Whybra, A. Zwanenburg, V. Andrearczyk, R. Schaer, A. P. Apte, A. Ayotte, B. Baheti, S. Bakas, A. Bettinelli, R. Boellaard, L. Boldrini, I. Buvat, G. J. R. Cook, F. Dietsche, N. Dinapoli, H. S. Gabryś, V. Goh, M. Guckenberger, M. Hatt, M. Hosseinzadeh, A. Iyer, J. Lenkowicz, M. A. L. Loutfi, S. Löck, F. Marturano, O. Morin, C. Nioche, F. Orlhac, S. Pati, A. Rahmim, S. M. Rezaeijo, C. G. Rookyard, M. R. Salmanpour, A. Schindele, I. Shiri, E. Spezi, S. Tanadini-Lang, F. Tixier, T. Upadhaya, V. Valentini, J. J. M. van Griethuysen, F. Yousefirizi, H. Zaidi, H. Müller, M. Vallières, and A. Depeursinge. The image biomarker standardization initiative: Standardized convolutional filters for reproducible radiomics and enhanced clinical insights. Radiology, 310(2):e231319, 2024. Winkels and Cohen 2019 M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. M. Weiler, F. A. Hamprecht, and M. Storath. Learning Steerable Filters for Rotation Equivariant CNNs. CoRR, abs/1711.0, 2018b. Whybra et al. 2024 P. Whybra, A. Zwanenburg, V. Andrearczyk, R. Schaer, A. P. Apte, A. Ayotte, B. Baheti, S. Bakas, A. Bettinelli, R. Boellaard, L. Boldrini, I. Buvat, G. J. R. Cook, F. Dietsche, N. Dinapoli, H. S. Gabryś, V. Goh, M. Guckenberger, M. Hatt, M. Hosseinzadeh, A. Iyer, J. Lenkowicz, M. A. L. Loutfi, S. Löck, F. Marturano, O. Morin, C. Nioche, F. Orlhac, S. Pati, A. Rahmim, S. M. Rezaeijo, C. G. Rookyard, M. R. Salmanpour, A. Schindele, I. Shiri, E. Spezi, S. Tanadini-Lang, F. Tixier, T. Upadhaya, V. Valentini, J. J. M. van Griethuysen, F. Yousefirizi, H. Zaidi, H. Müller, M. Vallières, and A. Depeursinge. The image biomarker standardization initiative: Standardized convolutional filters for reproducible radiomics and enhanced clinical insights. Radiology, 310(2):e231319, 2024. Winkels and Cohen 2019 M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. P. Whybra, A. Zwanenburg, V. Andrearczyk, R. Schaer, A. P. Apte, A. Ayotte, B. Baheti, S. Bakas, A. Bettinelli, R. Boellaard, L. Boldrini, I. Buvat, G. J. R. Cook, F. Dietsche, N. Dinapoli, H. S. Gabryś, V. Goh, M. Guckenberger, M. Hatt, M. Hosseinzadeh, A. Iyer, J. Lenkowicz, M. A. L. Loutfi, S. Löck, F. Marturano, O. Morin, C. Nioche, F. Orlhac, S. Pati, A. Rahmim, S. M. Rezaeijo, C. G. Rookyard, M. R. Salmanpour, A. Schindele, I. Shiri, E. Spezi, S. Tanadini-Lang, F. Tixier, T. Upadhaya, V. Valentini, J. J. M. van Griethuysen, F. Yousefirizi, H. Zaidi, H. Müller, M. Vallières, and A. Depeursinge. The image biomarker standardization initiative: Standardized convolutional filters for reproducible radiomics and enhanced clinical insights. Radiology, 310(2):e231319, 2024. Winkels and Cohen 2019 M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020.
- N. Petkov and P. Kruizinga. Computational models of visual neurons specialised in the detection of periodic and aperiodic oriented visual stimuli: Bar and grating cells. Biological Cybernetics, 76(2):83–96, 1997. Portilla and Simoncelli 2000 J. Portilla and E. P. Simoncelli. A Parametric Texture Model Based on Joint Statistics of Complex Wavelet Coefficients. International Journal of Computer Vision, 40(1):49–70, 2000. Prasanna et al. 2014 P. Prasanna, P. Tiwari, and A. Madabhushi. Co-occurrence of Local Anisotropic Gradient Orientations (CoLlAGe): Distinguishing tumor confounders and molecular subtypes on MRI. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), volume 8675 LNCS, pages 73–80. Springer Verlag, 2014. Qian et al. 2006 Z. Qian, D. N. Metaxas, and L. Axel. Extraction and Tracking of MRI Tagging Sheets Using a 3D Gabor Filter Bank. In 2006 International Conference of the IEEE Engineering in Medicine and Biology Society, pages 711–714. IEEE, 2006. Szczypiński and Klepaczko 2017 P. M. Szczypiński and A. Klepaczko. MaZda – A Framework for Biomedical Image Texture Analysis and Data Exploration. In Biomedical Texture Analysis, pages 315–347. Elsevier, 2017. Tamura et al. 1978 H. Tamura, S. Mori, and T. Yamawaki. Textural Features Corresponding to Visual Perception. IEEE Transactions on Systems, Man and Cybernetics, 8(6):460–473, 1978. Tustison et al. 2010 N. J. Tustison, B. B. Avants, P. A. Cook, Y. Zheng, A. Egan, P. A. Yushkevich, and J. C. Gee. N4ITK: improved N3 bias correction. IEEE Trans. Med. Imaging, 29(6):1310–1320, 2010. Unser 2012 M. Unser. Image Processing I and II. Ecole polytechnique fédérale de Lausanne (EPFL), 2012. Unser and Van De Ville 2010 M. Unser and D. Van De Ville. Wavelet steerability and the higher-order Riesz transform. IEEE Transactions on Image Processing, 19(3):636–652, 2010. Unser et al. 2011 M. Unser, N. Chenouard, and D. Van De Ville. Steerable Pyramids and Tight Wavelet Frames in L2(ℝd)subscript𝐿2superscriptℝ𝑑L_{2}(\mathbb{R}^{d})italic_L start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( blackboard_R start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT ). IEEE Transactions on Image Processing, 20(10):2705–2721, 2011. Vallières et al. 2015a M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. Data from: A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities, 2015a. Vallières et al. 2015b M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Phys. Med. Biol., 60(14):5471–5496, 2015b. van Griethuysen et al. 2017 J. J. M. van Griethuysen, A. Fedorov, C. Parmar, A. Hosny, N. Aucoin, V. Narayan, R. G. H. Beets-Tan, J.-C. Fillion-Robin, S. Pieper, and H. J. W. L. Aerts. Computational radiomics system to decode the radiographic phenotype. Cancer Res., 77(21):e104–e107, 2017. Weiler et al. 2018a M. Weiler, M. Geiger, M. Welling, W. Boomsma, and T. Cohen. 3D steerable CNNs: Learning rotationally equivariant features in volumetric data. In Advances in Neural Information Processing Systems, volume 2018-December, pages 10381–10392. Neural information processing systems foundation, 2018a. Weiler et al. 2018b M. Weiler, F. A. Hamprecht, and M. Storath. Learning Steerable Filters for Rotation Equivariant CNNs. CoRR, abs/1711.0, 2018b. Whybra et al. 2024 P. Whybra, A. Zwanenburg, V. Andrearczyk, R. Schaer, A. P. Apte, A. Ayotte, B. Baheti, S. Bakas, A. Bettinelli, R. Boellaard, L. Boldrini, I. Buvat, G. J. R. Cook, F. Dietsche, N. Dinapoli, H. S. Gabryś, V. Goh, M. Guckenberger, M. Hatt, M. Hosseinzadeh, A. Iyer, J. Lenkowicz, M. A. L. Loutfi, S. Löck, F. Marturano, O. Morin, C. Nioche, F. Orlhac, S. Pati, A. Rahmim, S. M. Rezaeijo, C. G. Rookyard, M. R. Salmanpour, A. Schindele, I. Shiri, E. Spezi, S. Tanadini-Lang, F. Tixier, T. Upadhaya, V. Valentini, J. J. M. van Griethuysen, F. Yousefirizi, H. Zaidi, H. Müller, M. Vallières, and A. Depeursinge. The image biomarker standardization initiative: Standardized convolutional filters for reproducible radiomics and enhanced clinical insights. Radiology, 310(2):e231319, 2024. Winkels and Cohen 2019 M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. J. Portilla and E. P. Simoncelli. A Parametric Texture Model Based on Joint Statistics of Complex Wavelet Coefficients. International Journal of Computer Vision, 40(1):49–70, 2000. Prasanna et al. 2014 P. Prasanna, P. Tiwari, and A. Madabhushi. Co-occurrence of Local Anisotropic Gradient Orientations (CoLlAGe): Distinguishing tumor confounders and molecular subtypes on MRI. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), volume 8675 LNCS, pages 73–80. Springer Verlag, 2014. Qian et al. 2006 Z. Qian, D. N. Metaxas, and L. Axel. Extraction and Tracking of MRI Tagging Sheets Using a 3D Gabor Filter Bank. In 2006 International Conference of the IEEE Engineering in Medicine and Biology Society, pages 711–714. IEEE, 2006. Szczypiński and Klepaczko 2017 P. M. Szczypiński and A. Klepaczko. MaZda – A Framework for Biomedical Image Texture Analysis and Data Exploration. In Biomedical Texture Analysis, pages 315–347. Elsevier, 2017. Tamura et al. 1978 H. Tamura, S. Mori, and T. Yamawaki. Textural Features Corresponding to Visual Perception. IEEE Transactions on Systems, Man and Cybernetics, 8(6):460–473, 1978. Tustison et al. 2010 N. J. Tustison, B. B. Avants, P. A. Cook, Y. Zheng, A. Egan, P. A. Yushkevich, and J. C. Gee. N4ITK: improved N3 bias correction. IEEE Trans. Med. Imaging, 29(6):1310–1320, 2010. Unser 2012 M. Unser. Image Processing I and II. Ecole polytechnique fédérale de Lausanne (EPFL), 2012. Unser and Van De Ville 2010 M. Unser and D. Van De Ville. Wavelet steerability and the higher-order Riesz transform. IEEE Transactions on Image Processing, 19(3):636–652, 2010. Unser et al. 2011 M. Unser, N. Chenouard, and D. Van De Ville. Steerable Pyramids and Tight Wavelet Frames in L2(ℝd)subscript𝐿2superscriptℝ𝑑L_{2}(\mathbb{R}^{d})italic_L start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( blackboard_R start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT ). IEEE Transactions on Image Processing, 20(10):2705–2721, 2011. Vallières et al. 2015a M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. Data from: A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities, 2015a. Vallières et al. 2015b M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Phys. Med. Biol., 60(14):5471–5496, 2015b. van Griethuysen et al. 2017 J. J. M. van Griethuysen, A. Fedorov, C. Parmar, A. Hosny, N. Aucoin, V. Narayan, R. G. H. Beets-Tan, J.-C. Fillion-Robin, S. Pieper, and H. J. W. L. Aerts. Computational radiomics system to decode the radiographic phenotype. Cancer Res., 77(21):e104–e107, 2017. Weiler et al. 2018a M. Weiler, M. Geiger, M. Welling, W. Boomsma, and T. Cohen. 3D steerable CNNs: Learning rotationally equivariant features in volumetric data. In Advances in Neural Information Processing Systems, volume 2018-December, pages 10381–10392. Neural information processing systems foundation, 2018a. Weiler et al. 2018b M. Weiler, F. A. Hamprecht, and M. Storath. Learning Steerable Filters for Rotation Equivariant CNNs. CoRR, abs/1711.0, 2018b. Whybra et al. 2024 P. Whybra, A. Zwanenburg, V. Andrearczyk, R. Schaer, A. P. Apte, A. Ayotte, B. Baheti, S. Bakas, A. Bettinelli, R. Boellaard, L. Boldrini, I. Buvat, G. J. R. Cook, F. Dietsche, N. Dinapoli, H. S. Gabryś, V. Goh, M. Guckenberger, M. Hatt, M. Hosseinzadeh, A. Iyer, J. Lenkowicz, M. A. L. Loutfi, S. Löck, F. Marturano, O. Morin, C. Nioche, F. Orlhac, S. Pati, A. Rahmim, S. M. Rezaeijo, C. G. Rookyard, M. R. Salmanpour, A. Schindele, I. Shiri, E. Spezi, S. Tanadini-Lang, F. Tixier, T. Upadhaya, V. Valentini, J. J. M. van Griethuysen, F. Yousefirizi, H. Zaidi, H. Müller, M. Vallières, and A. Depeursinge. The image biomarker standardization initiative: Standardized convolutional filters for reproducible radiomics and enhanced clinical insights. Radiology, 310(2):e231319, 2024. Winkels and Cohen 2019 M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. P. Prasanna, P. Tiwari, and A. Madabhushi. Co-occurrence of Local Anisotropic Gradient Orientations (CoLlAGe): Distinguishing tumor confounders and molecular subtypes on MRI. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), volume 8675 LNCS, pages 73–80. Springer Verlag, 2014. Qian et al. 2006 Z. Qian, D. N. Metaxas, and L. Axel. Extraction and Tracking of MRI Tagging Sheets Using a 3D Gabor Filter Bank. In 2006 International Conference of the IEEE Engineering in Medicine and Biology Society, pages 711–714. IEEE, 2006. Szczypiński and Klepaczko 2017 P. M. Szczypiński and A. Klepaczko. MaZda – A Framework for Biomedical Image Texture Analysis and Data Exploration. In Biomedical Texture Analysis, pages 315–347. Elsevier, 2017. Tamura et al. 1978 H. Tamura, S. Mori, and T. Yamawaki. Textural Features Corresponding to Visual Perception. IEEE Transactions on Systems, Man and Cybernetics, 8(6):460–473, 1978. Tustison et al. 2010 N. J. Tustison, B. B. Avants, P. A. Cook, Y. Zheng, A. Egan, P. A. Yushkevich, and J. C. Gee. N4ITK: improved N3 bias correction. IEEE Trans. Med. Imaging, 29(6):1310–1320, 2010. Unser 2012 M. Unser. Image Processing I and II. Ecole polytechnique fédérale de Lausanne (EPFL), 2012. Unser and Van De Ville 2010 M. Unser and D. Van De Ville. Wavelet steerability and the higher-order Riesz transform. IEEE Transactions on Image Processing, 19(3):636–652, 2010. Unser et al. 2011 M. Unser, N. Chenouard, and D. Van De Ville. Steerable Pyramids and Tight Wavelet Frames in L2(ℝd)subscript𝐿2superscriptℝ𝑑L_{2}(\mathbb{R}^{d})italic_L start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( blackboard_R start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT ). IEEE Transactions on Image Processing, 20(10):2705–2721, 2011. Vallières et al. 2015a M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. Data from: A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities, 2015a. Vallières et al. 2015b M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Phys. Med. Biol., 60(14):5471–5496, 2015b. van Griethuysen et al. 2017 J. J. M. van Griethuysen, A. Fedorov, C. Parmar, A. Hosny, N. Aucoin, V. Narayan, R. G. H. Beets-Tan, J.-C. Fillion-Robin, S. Pieper, and H. J. W. L. Aerts. Computational radiomics system to decode the radiographic phenotype. Cancer Res., 77(21):e104–e107, 2017. Weiler et al. 2018a M. Weiler, M. Geiger, M. Welling, W. Boomsma, and T. Cohen. 3D steerable CNNs: Learning rotationally equivariant features in volumetric data. In Advances in Neural Information Processing Systems, volume 2018-December, pages 10381–10392. Neural information processing systems foundation, 2018a. Weiler et al. 2018b M. Weiler, F. A. Hamprecht, and M. Storath. Learning Steerable Filters for Rotation Equivariant CNNs. CoRR, abs/1711.0, 2018b. Whybra et al. 2024 P. Whybra, A. Zwanenburg, V. Andrearczyk, R. Schaer, A. P. Apte, A. Ayotte, B. Baheti, S. Bakas, A. Bettinelli, R. Boellaard, L. Boldrini, I. Buvat, G. J. R. Cook, F. Dietsche, N. Dinapoli, H. S. Gabryś, V. Goh, M. Guckenberger, M. Hatt, M. Hosseinzadeh, A. Iyer, J. Lenkowicz, M. A. L. Loutfi, S. Löck, F. Marturano, O. Morin, C. Nioche, F. Orlhac, S. Pati, A. Rahmim, S. M. Rezaeijo, C. G. Rookyard, M. R. Salmanpour, A. Schindele, I. Shiri, E. Spezi, S. Tanadini-Lang, F. Tixier, T. Upadhaya, V. Valentini, J. J. M. van Griethuysen, F. Yousefirizi, H. Zaidi, H. Müller, M. Vallières, and A. Depeursinge. The image biomarker standardization initiative: Standardized convolutional filters for reproducible radiomics and enhanced clinical insights. Radiology, 310(2):e231319, 2024. Winkels and Cohen 2019 M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. Z. Qian, D. N. Metaxas, and L. Axel. Extraction and Tracking of MRI Tagging Sheets Using a 3D Gabor Filter Bank. In 2006 International Conference of the IEEE Engineering in Medicine and Biology Society, pages 711–714. IEEE, 2006. Szczypiński and Klepaczko 2017 P. M. Szczypiński and A. Klepaczko. MaZda – A Framework for Biomedical Image Texture Analysis and Data Exploration. In Biomedical Texture Analysis, pages 315–347. Elsevier, 2017. Tamura et al. 1978 H. Tamura, S. Mori, and T. Yamawaki. Textural Features Corresponding to Visual Perception. IEEE Transactions on Systems, Man and Cybernetics, 8(6):460–473, 1978. Tustison et al. 2010 N. J. Tustison, B. B. Avants, P. A. Cook, Y. Zheng, A. Egan, P. A. Yushkevich, and J. C. Gee. N4ITK: improved N3 bias correction. IEEE Trans. Med. Imaging, 29(6):1310–1320, 2010. Unser 2012 M. Unser. Image Processing I and II. Ecole polytechnique fédérale de Lausanne (EPFL), 2012. Unser and Van De Ville 2010 M. Unser and D. Van De Ville. Wavelet steerability and the higher-order Riesz transform. IEEE Transactions on Image Processing, 19(3):636–652, 2010. Unser et al. 2011 M. Unser, N. Chenouard, and D. Van De Ville. Steerable Pyramids and Tight Wavelet Frames in L2(ℝd)subscript𝐿2superscriptℝ𝑑L_{2}(\mathbb{R}^{d})italic_L start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( blackboard_R start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT ). IEEE Transactions on Image Processing, 20(10):2705–2721, 2011. Vallières et al. 2015a M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. Data from: A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities, 2015a. Vallières et al. 2015b M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Phys. Med. Biol., 60(14):5471–5496, 2015b. van Griethuysen et al. 2017 J. J. M. van Griethuysen, A. Fedorov, C. Parmar, A. Hosny, N. Aucoin, V. Narayan, R. G. H. Beets-Tan, J.-C. Fillion-Robin, S. Pieper, and H. J. W. L. Aerts. Computational radiomics system to decode the radiographic phenotype. Cancer Res., 77(21):e104–e107, 2017. Weiler et al. 2018a M. Weiler, M. Geiger, M. Welling, W. Boomsma, and T. Cohen. 3D steerable CNNs: Learning rotationally equivariant features in volumetric data. In Advances in Neural Information Processing Systems, volume 2018-December, pages 10381–10392. Neural information processing systems foundation, 2018a. Weiler et al. 2018b M. Weiler, F. A. Hamprecht, and M. Storath. Learning Steerable Filters for Rotation Equivariant CNNs. CoRR, abs/1711.0, 2018b. Whybra et al. 2024 P. Whybra, A. Zwanenburg, V. Andrearczyk, R. Schaer, A. P. Apte, A. Ayotte, B. Baheti, S. Bakas, A. Bettinelli, R. Boellaard, L. Boldrini, I. Buvat, G. J. R. Cook, F. Dietsche, N. Dinapoli, H. S. Gabryś, V. Goh, M. Guckenberger, M. Hatt, M. Hosseinzadeh, A. Iyer, J. Lenkowicz, M. A. L. Loutfi, S. Löck, F. Marturano, O. Morin, C. Nioche, F. Orlhac, S. Pati, A. Rahmim, S. M. Rezaeijo, C. G. Rookyard, M. R. Salmanpour, A. Schindele, I. Shiri, E. Spezi, S. Tanadini-Lang, F. Tixier, T. Upadhaya, V. Valentini, J. J. M. van Griethuysen, F. Yousefirizi, H. Zaidi, H. Müller, M. Vallières, and A. Depeursinge. The image biomarker standardization initiative: Standardized convolutional filters for reproducible radiomics and enhanced clinical insights. Radiology, 310(2):e231319, 2024. Winkels and Cohen 2019 M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. P. M. Szczypiński and A. Klepaczko. MaZda – A Framework for Biomedical Image Texture Analysis and Data Exploration. In Biomedical Texture Analysis, pages 315–347. Elsevier, 2017. Tamura et al. 1978 H. Tamura, S. Mori, and T. Yamawaki. Textural Features Corresponding to Visual Perception. IEEE Transactions on Systems, Man and Cybernetics, 8(6):460–473, 1978. Tustison et al. 2010 N. J. Tustison, B. B. Avants, P. A. Cook, Y. Zheng, A. Egan, P. A. Yushkevich, and J. C. Gee. N4ITK: improved N3 bias correction. IEEE Trans. Med. Imaging, 29(6):1310–1320, 2010. Unser 2012 M. Unser. Image Processing I and II. Ecole polytechnique fédérale de Lausanne (EPFL), 2012. Unser and Van De Ville 2010 M. Unser and D. Van De Ville. Wavelet steerability and the higher-order Riesz transform. IEEE Transactions on Image Processing, 19(3):636–652, 2010. Unser et al. 2011 M. Unser, N. Chenouard, and D. Van De Ville. Steerable Pyramids and Tight Wavelet Frames in L2(ℝd)subscript𝐿2superscriptℝ𝑑L_{2}(\mathbb{R}^{d})italic_L start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( blackboard_R start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT ). IEEE Transactions on Image Processing, 20(10):2705–2721, 2011. Vallières et al. 2015a M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. Data from: A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities, 2015a. Vallières et al. 2015b M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Phys. Med. Biol., 60(14):5471–5496, 2015b. van Griethuysen et al. 2017 J. J. M. van Griethuysen, A. Fedorov, C. Parmar, A. Hosny, N. Aucoin, V. Narayan, R. G. H. Beets-Tan, J.-C. Fillion-Robin, S. Pieper, and H. J. W. L. Aerts. Computational radiomics system to decode the radiographic phenotype. Cancer Res., 77(21):e104–e107, 2017. Weiler et al. 2018a M. Weiler, M. Geiger, M. Welling, W. Boomsma, and T. Cohen. 3D steerable CNNs: Learning rotationally equivariant features in volumetric data. In Advances in Neural Information Processing Systems, volume 2018-December, pages 10381–10392. Neural information processing systems foundation, 2018a. Weiler et al. 2018b M. Weiler, F. A. Hamprecht, and M. Storath. Learning Steerable Filters for Rotation Equivariant CNNs. CoRR, abs/1711.0, 2018b. Whybra et al. 2024 P. Whybra, A. Zwanenburg, V. Andrearczyk, R. Schaer, A. P. Apte, A. Ayotte, B. Baheti, S. Bakas, A. Bettinelli, R. Boellaard, L. Boldrini, I. Buvat, G. J. R. Cook, F. Dietsche, N. Dinapoli, H. S. Gabryś, V. Goh, M. Guckenberger, M. Hatt, M. Hosseinzadeh, A. Iyer, J. Lenkowicz, M. A. L. Loutfi, S. Löck, F. Marturano, O. Morin, C. Nioche, F. Orlhac, S. Pati, A. Rahmim, S. M. Rezaeijo, C. G. Rookyard, M. R. Salmanpour, A. Schindele, I. Shiri, E. Spezi, S. Tanadini-Lang, F. Tixier, T. Upadhaya, V. Valentini, J. J. M. van Griethuysen, F. Yousefirizi, H. Zaidi, H. Müller, M. Vallières, and A. Depeursinge. The image biomarker standardization initiative: Standardized convolutional filters for reproducible radiomics and enhanced clinical insights. Radiology, 310(2):e231319, 2024. Winkels and Cohen 2019 M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. H. Tamura, S. Mori, and T. Yamawaki. Textural Features Corresponding to Visual Perception. IEEE Transactions on Systems, Man and Cybernetics, 8(6):460–473, 1978. Tustison et al. 2010 N. J. Tustison, B. B. Avants, P. A. Cook, Y. Zheng, A. Egan, P. A. Yushkevich, and J. C. Gee. N4ITK: improved N3 bias correction. IEEE Trans. Med. Imaging, 29(6):1310–1320, 2010. Unser 2012 M. Unser. Image Processing I and II. Ecole polytechnique fédérale de Lausanne (EPFL), 2012. Unser and Van De Ville 2010 M. Unser and D. Van De Ville. Wavelet steerability and the higher-order Riesz transform. IEEE Transactions on Image Processing, 19(3):636–652, 2010. Unser et al. 2011 M. Unser, N. Chenouard, and D. Van De Ville. Steerable Pyramids and Tight Wavelet Frames in L2(ℝd)subscript𝐿2superscriptℝ𝑑L_{2}(\mathbb{R}^{d})italic_L start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( blackboard_R start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT ). IEEE Transactions on Image Processing, 20(10):2705–2721, 2011. Vallières et al. 2015a M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. Data from: A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities, 2015a. Vallières et al. 2015b M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Phys. Med. Biol., 60(14):5471–5496, 2015b. van Griethuysen et al. 2017 J. J. M. van Griethuysen, A. Fedorov, C. Parmar, A. Hosny, N. Aucoin, V. Narayan, R. G. H. Beets-Tan, J.-C. Fillion-Robin, S. Pieper, and H. J. W. L. Aerts. Computational radiomics system to decode the radiographic phenotype. Cancer Res., 77(21):e104–e107, 2017. Weiler et al. 2018a M. Weiler, M. Geiger, M. Welling, W. Boomsma, and T. Cohen. 3D steerable CNNs: Learning rotationally equivariant features in volumetric data. In Advances in Neural Information Processing Systems, volume 2018-December, pages 10381–10392. Neural information processing systems foundation, 2018a. Weiler et al. 2018b M. Weiler, F. A. Hamprecht, and M. Storath. Learning Steerable Filters for Rotation Equivariant CNNs. CoRR, abs/1711.0, 2018b. Whybra et al. 2024 P. Whybra, A. Zwanenburg, V. Andrearczyk, R. Schaer, A. P. Apte, A. Ayotte, B. Baheti, S. Bakas, A. Bettinelli, R. Boellaard, L. Boldrini, I. Buvat, G. J. R. Cook, F. Dietsche, N. Dinapoli, H. S. Gabryś, V. Goh, M. Guckenberger, M. Hatt, M. Hosseinzadeh, A. Iyer, J. Lenkowicz, M. A. L. Loutfi, S. Löck, F. Marturano, O. Morin, C. Nioche, F. Orlhac, S. Pati, A. Rahmim, S. M. Rezaeijo, C. G. Rookyard, M. R. Salmanpour, A. Schindele, I. Shiri, E. Spezi, S. Tanadini-Lang, F. Tixier, T. Upadhaya, V. Valentini, J. J. M. van Griethuysen, F. Yousefirizi, H. Zaidi, H. Müller, M. Vallières, and A. Depeursinge. The image biomarker standardization initiative: Standardized convolutional filters for reproducible radiomics and enhanced clinical insights. Radiology, 310(2):e231319, 2024. Winkels and Cohen 2019 M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. N. J. Tustison, B. B. Avants, P. A. Cook, Y. Zheng, A. Egan, P. A. Yushkevich, and J. C. Gee. N4ITK: improved N3 bias correction. IEEE Trans. Med. Imaging, 29(6):1310–1320, 2010. Unser 2012 M. Unser. Image Processing I and II. Ecole polytechnique fédérale de Lausanne (EPFL), 2012. Unser and Van De Ville 2010 M. Unser and D. Van De Ville. Wavelet steerability and the higher-order Riesz transform. IEEE Transactions on Image Processing, 19(3):636–652, 2010. Unser et al. 2011 M. Unser, N. Chenouard, and D. Van De Ville. Steerable Pyramids and Tight Wavelet Frames in L2(ℝd)subscript𝐿2superscriptℝ𝑑L_{2}(\mathbb{R}^{d})italic_L start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( blackboard_R start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT ). IEEE Transactions on Image Processing, 20(10):2705–2721, 2011. Vallières et al. 2015a M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. Data from: A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities, 2015a. Vallières et al. 2015b M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Phys. Med. Biol., 60(14):5471–5496, 2015b. van Griethuysen et al. 2017 J. J. M. van Griethuysen, A. Fedorov, C. Parmar, A. Hosny, N. Aucoin, V. Narayan, R. G. H. Beets-Tan, J.-C. Fillion-Robin, S. Pieper, and H. J. W. L. Aerts. Computational radiomics system to decode the radiographic phenotype. Cancer Res., 77(21):e104–e107, 2017. Weiler et al. 2018a M. Weiler, M. Geiger, M. Welling, W. Boomsma, and T. Cohen. 3D steerable CNNs: Learning rotationally equivariant features in volumetric data. In Advances in Neural Information Processing Systems, volume 2018-December, pages 10381–10392. Neural information processing systems foundation, 2018a. Weiler et al. 2018b M. Weiler, F. A. Hamprecht, and M. Storath. Learning Steerable Filters for Rotation Equivariant CNNs. CoRR, abs/1711.0, 2018b. Whybra et al. 2024 P. Whybra, A. Zwanenburg, V. Andrearczyk, R. Schaer, A. P. Apte, A. Ayotte, B. Baheti, S. Bakas, A. Bettinelli, R. Boellaard, L. Boldrini, I. Buvat, G. J. R. Cook, F. Dietsche, N. Dinapoli, H. S. Gabryś, V. Goh, M. Guckenberger, M. Hatt, M. Hosseinzadeh, A. Iyer, J. Lenkowicz, M. A. L. Loutfi, S. Löck, F. Marturano, O. Morin, C. Nioche, F. Orlhac, S. Pati, A. Rahmim, S. M. Rezaeijo, C. G. Rookyard, M. R. Salmanpour, A. Schindele, I. Shiri, E. Spezi, S. Tanadini-Lang, F. Tixier, T. Upadhaya, V. Valentini, J. J. M. van Griethuysen, F. Yousefirizi, H. Zaidi, H. Müller, M. Vallières, and A. Depeursinge. The image biomarker standardization initiative: Standardized convolutional filters for reproducible radiomics and enhanced clinical insights. Radiology, 310(2):e231319, 2024. Winkels and Cohen 2019 M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. M. Unser. Image Processing I and II. Ecole polytechnique fédérale de Lausanne (EPFL), 2012. Unser and Van De Ville 2010 M. Unser and D. Van De Ville. Wavelet steerability and the higher-order Riesz transform. IEEE Transactions on Image Processing, 19(3):636–652, 2010. Unser et al. 2011 M. Unser, N. Chenouard, and D. Van De Ville. Steerable Pyramids and Tight Wavelet Frames in L2(ℝd)subscript𝐿2superscriptℝ𝑑L_{2}(\mathbb{R}^{d})italic_L start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( blackboard_R start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT ). IEEE Transactions on Image Processing, 20(10):2705–2721, 2011. Vallières et al. 2015a M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. Data from: A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities, 2015a. Vallières et al. 2015b M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Phys. Med. Biol., 60(14):5471–5496, 2015b. van Griethuysen et al. 2017 J. J. M. van Griethuysen, A. Fedorov, C. Parmar, A. Hosny, N. Aucoin, V. Narayan, R. G. H. Beets-Tan, J.-C. Fillion-Robin, S. Pieper, and H. J. W. L. Aerts. Computational radiomics system to decode the radiographic phenotype. Cancer Res., 77(21):e104–e107, 2017. Weiler et al. 2018a M. Weiler, M. Geiger, M. Welling, W. Boomsma, and T. Cohen. 3D steerable CNNs: Learning rotationally equivariant features in volumetric data. In Advances in Neural Information Processing Systems, volume 2018-December, pages 10381–10392. Neural information processing systems foundation, 2018a. Weiler et al. 2018b M. Weiler, F. A. Hamprecht, and M. Storath. Learning Steerable Filters for Rotation Equivariant CNNs. CoRR, abs/1711.0, 2018b. Whybra et al. 2024 P. Whybra, A. Zwanenburg, V. Andrearczyk, R. Schaer, A. P. Apte, A. Ayotte, B. Baheti, S. Bakas, A. Bettinelli, R. Boellaard, L. Boldrini, I. Buvat, G. J. R. Cook, F. Dietsche, N. Dinapoli, H. S. Gabryś, V. Goh, M. Guckenberger, M. Hatt, M. Hosseinzadeh, A. Iyer, J. Lenkowicz, M. A. L. Loutfi, S. Löck, F. Marturano, O. Morin, C. Nioche, F. Orlhac, S. Pati, A. Rahmim, S. M. Rezaeijo, C. G. Rookyard, M. R. Salmanpour, A. Schindele, I. Shiri, E. Spezi, S. Tanadini-Lang, F. Tixier, T. Upadhaya, V. Valentini, J. J. M. van Griethuysen, F. Yousefirizi, H. Zaidi, H. Müller, M. Vallières, and A. Depeursinge. The image biomarker standardization initiative: Standardized convolutional filters for reproducible radiomics and enhanced clinical insights. Radiology, 310(2):e231319, 2024. Winkels and Cohen 2019 M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. M. Unser and D. Van De Ville. Wavelet steerability and the higher-order Riesz transform. IEEE Transactions on Image Processing, 19(3):636–652, 2010. Unser et al. 2011 M. Unser, N. Chenouard, and D. Van De Ville. Steerable Pyramids and Tight Wavelet Frames in L2(ℝd)subscript𝐿2superscriptℝ𝑑L_{2}(\mathbb{R}^{d})italic_L start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( blackboard_R start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT ). IEEE Transactions on Image Processing, 20(10):2705–2721, 2011. Vallières et al. 2015a M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. Data from: A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities, 2015a. Vallières et al. 2015b M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Phys. Med. Biol., 60(14):5471–5496, 2015b. van Griethuysen et al. 2017 J. J. M. van Griethuysen, A. Fedorov, C. Parmar, A. Hosny, N. Aucoin, V. Narayan, R. G. H. Beets-Tan, J.-C. Fillion-Robin, S. Pieper, and H. J. W. L. Aerts. Computational radiomics system to decode the radiographic phenotype. Cancer Res., 77(21):e104–e107, 2017. Weiler et al. 2018a M. Weiler, M. Geiger, M. Welling, W. Boomsma, and T. Cohen. 3D steerable CNNs: Learning rotationally equivariant features in volumetric data. In Advances in Neural Information Processing Systems, volume 2018-December, pages 10381–10392. Neural information processing systems foundation, 2018a. Weiler et al. 2018b M. Weiler, F. A. Hamprecht, and M. Storath. Learning Steerable Filters for Rotation Equivariant CNNs. CoRR, abs/1711.0, 2018b. Whybra et al. 2024 P. Whybra, A. Zwanenburg, V. Andrearczyk, R. Schaer, A. P. Apte, A. Ayotte, B. Baheti, S. Bakas, A. Bettinelli, R. Boellaard, L. Boldrini, I. Buvat, G. J. R. Cook, F. Dietsche, N. Dinapoli, H. S. Gabryś, V. Goh, M. Guckenberger, M. Hatt, M. Hosseinzadeh, A. Iyer, J. Lenkowicz, M. A. L. Loutfi, S. Löck, F. Marturano, O. Morin, C. Nioche, F. Orlhac, S. Pati, A. Rahmim, S. M. Rezaeijo, C. G. Rookyard, M. R. Salmanpour, A. Schindele, I. Shiri, E. Spezi, S. Tanadini-Lang, F. Tixier, T. Upadhaya, V. Valentini, J. J. M. van Griethuysen, F. Yousefirizi, H. Zaidi, H. Müller, M. Vallières, and A. Depeursinge. The image biomarker standardization initiative: Standardized convolutional filters for reproducible radiomics and enhanced clinical insights. Radiology, 310(2):e231319, 2024. Winkels and Cohen 2019 M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. M. Unser, N. Chenouard, and D. Van De Ville. Steerable Pyramids and Tight Wavelet Frames in L2(ℝd)subscript𝐿2superscriptℝ𝑑L_{2}(\mathbb{R}^{d})italic_L start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( blackboard_R start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT ). IEEE Transactions on Image Processing, 20(10):2705–2721, 2011. Vallières et al. 2015a M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. Data from: A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities, 2015a. Vallières et al. 2015b M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Phys. Med. Biol., 60(14):5471–5496, 2015b. van Griethuysen et al. 2017 J. J. M. van Griethuysen, A. Fedorov, C. Parmar, A. Hosny, N. Aucoin, V. Narayan, R. G. H. Beets-Tan, J.-C. Fillion-Robin, S. Pieper, and H. J. W. L. Aerts. Computational radiomics system to decode the radiographic phenotype. Cancer Res., 77(21):e104–e107, 2017. Weiler et al. 2018a M. Weiler, M. Geiger, M. Welling, W. Boomsma, and T. Cohen. 3D steerable CNNs: Learning rotationally equivariant features in volumetric data. In Advances in Neural Information Processing Systems, volume 2018-December, pages 10381–10392. Neural information processing systems foundation, 2018a. Weiler et al. 2018b M. Weiler, F. A. Hamprecht, and M. Storath. Learning Steerable Filters for Rotation Equivariant CNNs. CoRR, abs/1711.0, 2018b. Whybra et al. 2024 P. Whybra, A. Zwanenburg, V. Andrearczyk, R. Schaer, A. P. Apte, A. Ayotte, B. Baheti, S. Bakas, A. Bettinelli, R. Boellaard, L. Boldrini, I. Buvat, G. J. R. Cook, F. Dietsche, N. Dinapoli, H. S. Gabryś, V. Goh, M. Guckenberger, M. Hatt, M. Hosseinzadeh, A. Iyer, J. Lenkowicz, M. A. L. Loutfi, S. Löck, F. Marturano, O. Morin, C. Nioche, F. Orlhac, S. Pati, A. Rahmim, S. M. Rezaeijo, C. G. Rookyard, M. R. Salmanpour, A. Schindele, I. Shiri, E. Spezi, S. Tanadini-Lang, F. Tixier, T. Upadhaya, V. Valentini, J. J. M. van Griethuysen, F. Yousefirizi, H. Zaidi, H. Müller, M. Vallières, and A. Depeursinge. The image biomarker standardization initiative: Standardized convolutional filters for reproducible radiomics and enhanced clinical insights. Radiology, 310(2):e231319, 2024. Winkels and Cohen 2019 M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. Data from: A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities, 2015a. Vallières et al. 2015b M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Phys. Med. Biol., 60(14):5471–5496, 2015b. van Griethuysen et al. 2017 J. J. M. van Griethuysen, A. Fedorov, C. Parmar, A. Hosny, N. Aucoin, V. Narayan, R. G. H. Beets-Tan, J.-C. Fillion-Robin, S. Pieper, and H. J. W. L. Aerts. Computational radiomics system to decode the radiographic phenotype. Cancer Res., 77(21):e104–e107, 2017. Weiler et al. 2018a M. Weiler, M. Geiger, M. Welling, W. Boomsma, and T. Cohen. 3D steerable CNNs: Learning rotationally equivariant features in volumetric data. In Advances in Neural Information Processing Systems, volume 2018-December, pages 10381–10392. Neural information processing systems foundation, 2018a. Weiler et al. 2018b M. Weiler, F. A. Hamprecht, and M. Storath. Learning Steerable Filters for Rotation Equivariant CNNs. CoRR, abs/1711.0, 2018b. Whybra et al. 2024 P. Whybra, A. Zwanenburg, V. Andrearczyk, R. Schaer, A. P. Apte, A. Ayotte, B. Baheti, S. Bakas, A. Bettinelli, R. Boellaard, L. Boldrini, I. Buvat, G. J. R. Cook, F. Dietsche, N. Dinapoli, H. S. Gabryś, V. Goh, M. Guckenberger, M. Hatt, M. Hosseinzadeh, A. Iyer, J. Lenkowicz, M. A. L. Loutfi, S. Löck, F. Marturano, O. Morin, C. Nioche, F. Orlhac, S. Pati, A. Rahmim, S. M. Rezaeijo, C. G. Rookyard, M. R. Salmanpour, A. Schindele, I. Shiri, E. Spezi, S. Tanadini-Lang, F. Tixier, T. Upadhaya, V. Valentini, J. J. M. van Griethuysen, F. Yousefirizi, H. Zaidi, H. Müller, M. Vallières, and A. Depeursinge. The image biomarker standardization initiative: Standardized convolutional filters for reproducible radiomics and enhanced clinical insights. Radiology, 310(2):e231319, 2024. Winkels and Cohen 2019 M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Phys. Med. Biol., 60(14):5471–5496, 2015b. van Griethuysen et al. 2017 J. J. M. van Griethuysen, A. Fedorov, C. Parmar, A. Hosny, N. Aucoin, V. Narayan, R. G. H. Beets-Tan, J.-C. Fillion-Robin, S. Pieper, and H. J. W. L. Aerts. Computational radiomics system to decode the radiographic phenotype. Cancer Res., 77(21):e104–e107, 2017. Weiler et al. 2018a M. Weiler, M. Geiger, M. Welling, W. Boomsma, and T. Cohen. 3D steerable CNNs: Learning rotationally equivariant features in volumetric data. In Advances in Neural Information Processing Systems, volume 2018-December, pages 10381–10392. Neural information processing systems foundation, 2018a. Weiler et al. 2018b M. Weiler, F. A. Hamprecht, and M. Storath. Learning Steerable Filters for Rotation Equivariant CNNs. CoRR, abs/1711.0, 2018b. Whybra et al. 2024 P. Whybra, A. Zwanenburg, V. Andrearczyk, R. Schaer, A. P. Apte, A. Ayotte, B. Baheti, S. Bakas, A. Bettinelli, R. Boellaard, L. Boldrini, I. Buvat, G. J. R. Cook, F. Dietsche, N. Dinapoli, H. S. Gabryś, V. Goh, M. Guckenberger, M. Hatt, M. Hosseinzadeh, A. Iyer, J. Lenkowicz, M. A. L. Loutfi, S. Löck, F. Marturano, O. Morin, C. Nioche, F. Orlhac, S. Pati, A. Rahmim, S. M. Rezaeijo, C. G. Rookyard, M. R. Salmanpour, A. Schindele, I. Shiri, E. Spezi, S. Tanadini-Lang, F. Tixier, T. Upadhaya, V. Valentini, J. J. M. van Griethuysen, F. Yousefirizi, H. Zaidi, H. Müller, M. Vallières, and A. Depeursinge. The image biomarker standardization initiative: Standardized convolutional filters for reproducible radiomics and enhanced clinical insights. Radiology, 310(2):e231319, 2024. Winkels and Cohen 2019 M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. J. J. M. van Griethuysen, A. Fedorov, C. Parmar, A. Hosny, N. Aucoin, V. Narayan, R. G. H. Beets-Tan, J.-C. Fillion-Robin, S. Pieper, and H. J. W. L. Aerts. Computational radiomics system to decode the radiographic phenotype. Cancer Res., 77(21):e104–e107, 2017. Weiler et al. 2018a M. Weiler, M. Geiger, M. Welling, W. Boomsma, and T. Cohen. 3D steerable CNNs: Learning rotationally equivariant features in volumetric data. In Advances in Neural Information Processing Systems, volume 2018-December, pages 10381–10392. Neural information processing systems foundation, 2018a. Weiler et al. 2018b M. Weiler, F. A. Hamprecht, and M. Storath. Learning Steerable Filters for Rotation Equivariant CNNs. CoRR, abs/1711.0, 2018b. Whybra et al. 2024 P. Whybra, A. Zwanenburg, V. Andrearczyk, R. Schaer, A. P. Apte, A. Ayotte, B. Baheti, S. Bakas, A. Bettinelli, R. Boellaard, L. Boldrini, I. Buvat, G. J. R. Cook, F. Dietsche, N. Dinapoli, H. S. Gabryś, V. Goh, M. Guckenberger, M. Hatt, M. Hosseinzadeh, A. Iyer, J. Lenkowicz, M. A. L. Loutfi, S. Löck, F. Marturano, O. Morin, C. Nioche, F. Orlhac, S. Pati, A. Rahmim, S. M. Rezaeijo, C. G. Rookyard, M. R. Salmanpour, A. Schindele, I. Shiri, E. Spezi, S. Tanadini-Lang, F. Tixier, T. Upadhaya, V. Valentini, J. J. M. van Griethuysen, F. Yousefirizi, H. Zaidi, H. Müller, M. Vallières, and A. Depeursinge. The image biomarker standardization initiative: Standardized convolutional filters for reproducible radiomics and enhanced clinical insights. Radiology, 310(2):e231319, 2024. Winkels and Cohen 2019 M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. M. Weiler, M. Geiger, M. Welling, W. Boomsma, and T. Cohen. 3D steerable CNNs: Learning rotationally equivariant features in volumetric data. In Advances in Neural Information Processing Systems, volume 2018-December, pages 10381–10392. Neural information processing systems foundation, 2018a. Weiler et al. 2018b M. Weiler, F. A. Hamprecht, and M. Storath. Learning Steerable Filters for Rotation Equivariant CNNs. CoRR, abs/1711.0, 2018b. Whybra et al. 2024 P. Whybra, A. Zwanenburg, V. Andrearczyk, R. Schaer, A. P. Apte, A. Ayotte, B. Baheti, S. Bakas, A. Bettinelli, R. Boellaard, L. Boldrini, I. Buvat, G. J. R. Cook, F. Dietsche, N. Dinapoli, H. S. Gabryś, V. Goh, M. Guckenberger, M. Hatt, M. Hosseinzadeh, A. Iyer, J. Lenkowicz, M. A. L. Loutfi, S. Löck, F. Marturano, O. Morin, C. Nioche, F. Orlhac, S. Pati, A. Rahmim, S. M. Rezaeijo, C. G. Rookyard, M. R. Salmanpour, A. Schindele, I. Shiri, E. Spezi, S. Tanadini-Lang, F. Tixier, T. Upadhaya, V. Valentini, J. J. M. van Griethuysen, F. Yousefirizi, H. Zaidi, H. Müller, M. Vallières, and A. Depeursinge. The image biomarker standardization initiative: Standardized convolutional filters for reproducible radiomics and enhanced clinical insights. Radiology, 310(2):e231319, 2024. Winkels and Cohen 2019 M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. M. Weiler, F. A. Hamprecht, and M. Storath. Learning Steerable Filters for Rotation Equivariant CNNs. CoRR, abs/1711.0, 2018b. Whybra et al. 2024 P. Whybra, A. Zwanenburg, V. Andrearczyk, R. Schaer, A. P. Apte, A. Ayotte, B. Baheti, S. Bakas, A. Bettinelli, R. Boellaard, L. Boldrini, I. Buvat, G. J. R. Cook, F. Dietsche, N. Dinapoli, H. S. Gabryś, V. Goh, M. Guckenberger, M. Hatt, M. Hosseinzadeh, A. Iyer, J. Lenkowicz, M. A. L. Loutfi, S. Löck, F. Marturano, O. Morin, C. Nioche, F. Orlhac, S. Pati, A. Rahmim, S. M. Rezaeijo, C. G. Rookyard, M. R. Salmanpour, A. Schindele, I. Shiri, E. Spezi, S. Tanadini-Lang, F. Tixier, T. Upadhaya, V. Valentini, J. J. M. van Griethuysen, F. Yousefirizi, H. Zaidi, H. Müller, M. Vallières, and A. Depeursinge. The image biomarker standardization initiative: Standardized convolutional filters for reproducible radiomics and enhanced clinical insights. Radiology, 310(2):e231319, 2024. Winkels and Cohen 2019 M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. P. Whybra, A. Zwanenburg, V. Andrearczyk, R. Schaer, A. P. Apte, A. Ayotte, B. Baheti, S. Bakas, A. Bettinelli, R. Boellaard, L. Boldrini, I. Buvat, G. J. R. Cook, F. Dietsche, N. Dinapoli, H. S. Gabryś, V. Goh, M. Guckenberger, M. Hatt, M. Hosseinzadeh, A. Iyer, J. Lenkowicz, M. A. L. Loutfi, S. Löck, F. Marturano, O. Morin, C. Nioche, F. Orlhac, S. Pati, A. Rahmim, S. M. Rezaeijo, C. G. Rookyard, M. R. Salmanpour, A. Schindele, I. Shiri, E. Spezi, S. Tanadini-Lang, F. Tixier, T. Upadhaya, V. Valentini, J. J. M. van Griethuysen, F. Yousefirizi, H. Zaidi, H. Müller, M. Vallières, and A. Depeursinge. The image biomarker standardization initiative: Standardized convolutional filters for reproducible radiomics and enhanced clinical insights. Radiology, 310(2):e231319, 2024. Winkels and Cohen 2019 M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020.
- J. Portilla and E. P. Simoncelli. A Parametric Texture Model Based on Joint Statistics of Complex Wavelet Coefficients. International Journal of Computer Vision, 40(1):49–70, 2000. Prasanna et al. 2014 P. Prasanna, P. Tiwari, and A. Madabhushi. Co-occurrence of Local Anisotropic Gradient Orientations (CoLlAGe): Distinguishing tumor confounders and molecular subtypes on MRI. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), volume 8675 LNCS, pages 73–80. Springer Verlag, 2014. Qian et al. 2006 Z. Qian, D. N. Metaxas, and L. Axel. Extraction and Tracking of MRI Tagging Sheets Using a 3D Gabor Filter Bank. In 2006 International Conference of the IEEE Engineering in Medicine and Biology Society, pages 711–714. IEEE, 2006. Szczypiński and Klepaczko 2017 P. M. Szczypiński and A. Klepaczko. MaZda – A Framework for Biomedical Image Texture Analysis and Data Exploration. In Biomedical Texture Analysis, pages 315–347. Elsevier, 2017. Tamura et al. 1978 H. Tamura, S. Mori, and T. Yamawaki. Textural Features Corresponding to Visual Perception. IEEE Transactions on Systems, Man and Cybernetics, 8(6):460–473, 1978. Tustison et al. 2010 N. J. Tustison, B. B. Avants, P. A. Cook, Y. Zheng, A. Egan, P. A. Yushkevich, and J. C. Gee. N4ITK: improved N3 bias correction. IEEE Trans. Med. Imaging, 29(6):1310–1320, 2010. Unser 2012 M. Unser. Image Processing I and II. Ecole polytechnique fédérale de Lausanne (EPFL), 2012. Unser and Van De Ville 2010 M. Unser and D. Van De Ville. Wavelet steerability and the higher-order Riesz transform. IEEE Transactions on Image Processing, 19(3):636–652, 2010. Unser et al. 2011 M. Unser, N. Chenouard, and D. Van De Ville. Steerable Pyramids and Tight Wavelet Frames in L2(ℝd)subscript𝐿2superscriptℝ𝑑L_{2}(\mathbb{R}^{d})italic_L start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( blackboard_R start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT ). IEEE Transactions on Image Processing, 20(10):2705–2721, 2011. Vallières et al. 2015a M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. Data from: A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities, 2015a. Vallières et al. 2015b M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Phys. Med. Biol., 60(14):5471–5496, 2015b. van Griethuysen et al. 2017 J. J. M. van Griethuysen, A. Fedorov, C. Parmar, A. Hosny, N. Aucoin, V. Narayan, R. G. H. Beets-Tan, J.-C. Fillion-Robin, S. Pieper, and H. J. W. L. Aerts. Computational radiomics system to decode the radiographic phenotype. Cancer Res., 77(21):e104–e107, 2017. Weiler et al. 2018a M. Weiler, M. Geiger, M. Welling, W. Boomsma, and T. Cohen. 3D steerable CNNs: Learning rotationally equivariant features in volumetric data. In Advances in Neural Information Processing Systems, volume 2018-December, pages 10381–10392. Neural information processing systems foundation, 2018a. Weiler et al. 2018b M. Weiler, F. A. Hamprecht, and M. Storath. Learning Steerable Filters for Rotation Equivariant CNNs. CoRR, abs/1711.0, 2018b. Whybra et al. 2024 P. Whybra, A. Zwanenburg, V. Andrearczyk, R. Schaer, A. P. Apte, A. Ayotte, B. Baheti, S. Bakas, A. Bettinelli, R. Boellaard, L. Boldrini, I. Buvat, G. J. R. Cook, F. Dietsche, N. Dinapoli, H. S. Gabryś, V. Goh, M. Guckenberger, M. Hatt, M. Hosseinzadeh, A. Iyer, J. Lenkowicz, M. A. L. Loutfi, S. Löck, F. Marturano, O. Morin, C. Nioche, F. Orlhac, S. Pati, A. Rahmim, S. M. Rezaeijo, C. G. Rookyard, M. R. Salmanpour, A. Schindele, I. Shiri, E. Spezi, S. Tanadini-Lang, F. Tixier, T. Upadhaya, V. Valentini, J. J. M. van Griethuysen, F. Yousefirizi, H. Zaidi, H. Müller, M. Vallières, and A. Depeursinge. The image biomarker standardization initiative: Standardized convolutional filters for reproducible radiomics and enhanced clinical insights. Radiology, 310(2):e231319, 2024. Winkels and Cohen 2019 M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. P. Prasanna, P. Tiwari, and A. Madabhushi. Co-occurrence of Local Anisotropic Gradient Orientations (CoLlAGe): Distinguishing tumor confounders and molecular subtypes on MRI. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), volume 8675 LNCS, pages 73–80. Springer Verlag, 2014. Qian et al. 2006 Z. Qian, D. N. Metaxas, and L. Axel. Extraction and Tracking of MRI Tagging Sheets Using a 3D Gabor Filter Bank. In 2006 International Conference of the IEEE Engineering in Medicine and Biology Society, pages 711–714. IEEE, 2006. Szczypiński and Klepaczko 2017 P. M. Szczypiński and A. Klepaczko. MaZda – A Framework for Biomedical Image Texture Analysis and Data Exploration. In Biomedical Texture Analysis, pages 315–347. Elsevier, 2017. Tamura et al. 1978 H. Tamura, S. Mori, and T. Yamawaki. Textural Features Corresponding to Visual Perception. IEEE Transactions on Systems, Man and Cybernetics, 8(6):460–473, 1978. Tustison et al. 2010 N. J. Tustison, B. B. Avants, P. A. Cook, Y. Zheng, A. Egan, P. A. Yushkevich, and J. C. Gee. N4ITK: improved N3 bias correction. IEEE Trans. Med. Imaging, 29(6):1310–1320, 2010. Unser 2012 M. Unser. Image Processing I and II. Ecole polytechnique fédérale de Lausanne (EPFL), 2012. Unser and Van De Ville 2010 M. Unser and D. Van De Ville. Wavelet steerability and the higher-order Riesz transform. IEEE Transactions on Image Processing, 19(3):636–652, 2010. Unser et al. 2011 M. Unser, N. Chenouard, and D. Van De Ville. Steerable Pyramids and Tight Wavelet Frames in L2(ℝd)subscript𝐿2superscriptℝ𝑑L_{2}(\mathbb{R}^{d})italic_L start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( blackboard_R start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT ). IEEE Transactions on Image Processing, 20(10):2705–2721, 2011. Vallières et al. 2015a M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. Data from: A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities, 2015a. Vallières et al. 2015b M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Phys. Med. Biol., 60(14):5471–5496, 2015b. van Griethuysen et al. 2017 J. J. M. van Griethuysen, A. Fedorov, C. Parmar, A. Hosny, N. Aucoin, V. Narayan, R. G. H. Beets-Tan, J.-C. Fillion-Robin, S. Pieper, and H. J. W. L. Aerts. Computational radiomics system to decode the radiographic phenotype. Cancer Res., 77(21):e104–e107, 2017. Weiler et al. 2018a M. Weiler, M. Geiger, M. Welling, W. Boomsma, and T. Cohen. 3D steerable CNNs: Learning rotationally equivariant features in volumetric data. In Advances in Neural Information Processing Systems, volume 2018-December, pages 10381–10392. Neural information processing systems foundation, 2018a. Weiler et al. 2018b M. Weiler, F. A. Hamprecht, and M. Storath. Learning Steerable Filters for Rotation Equivariant CNNs. CoRR, abs/1711.0, 2018b. Whybra et al. 2024 P. Whybra, A. Zwanenburg, V. Andrearczyk, R. Schaer, A. P. Apte, A. Ayotte, B. Baheti, S. Bakas, A. Bettinelli, R. Boellaard, L. Boldrini, I. Buvat, G. J. R. Cook, F. Dietsche, N. Dinapoli, H. S. Gabryś, V. Goh, M. Guckenberger, M. Hatt, M. Hosseinzadeh, A. Iyer, J. Lenkowicz, M. A. L. Loutfi, S. Löck, F. Marturano, O. Morin, C. Nioche, F. Orlhac, S. Pati, A. Rahmim, S. M. Rezaeijo, C. G. Rookyard, M. R. Salmanpour, A. Schindele, I. Shiri, E. Spezi, S. Tanadini-Lang, F. Tixier, T. Upadhaya, V. Valentini, J. J. M. van Griethuysen, F. Yousefirizi, H. Zaidi, H. Müller, M. Vallières, and A. Depeursinge. The image biomarker standardization initiative: Standardized convolutional filters for reproducible radiomics and enhanced clinical insights. Radiology, 310(2):e231319, 2024. Winkels and Cohen 2019 M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. Z. Qian, D. N. Metaxas, and L. Axel. Extraction and Tracking of MRI Tagging Sheets Using a 3D Gabor Filter Bank. In 2006 International Conference of the IEEE Engineering in Medicine and Biology Society, pages 711–714. IEEE, 2006. Szczypiński and Klepaczko 2017 P. M. Szczypiński and A. Klepaczko. MaZda – A Framework for Biomedical Image Texture Analysis and Data Exploration. In Biomedical Texture Analysis, pages 315–347. Elsevier, 2017. Tamura et al. 1978 H. Tamura, S. Mori, and T. Yamawaki. Textural Features Corresponding to Visual Perception. IEEE Transactions on Systems, Man and Cybernetics, 8(6):460–473, 1978. Tustison et al. 2010 N. J. Tustison, B. B. Avants, P. A. Cook, Y. Zheng, A. Egan, P. A. Yushkevich, and J. C. Gee. N4ITK: improved N3 bias correction. IEEE Trans. Med. Imaging, 29(6):1310–1320, 2010. Unser 2012 M. Unser. Image Processing I and II. Ecole polytechnique fédérale de Lausanne (EPFL), 2012. Unser and Van De Ville 2010 M. Unser and D. Van De Ville. Wavelet steerability and the higher-order Riesz transform. IEEE Transactions on Image Processing, 19(3):636–652, 2010. Unser et al. 2011 M. Unser, N. Chenouard, and D. Van De Ville. Steerable Pyramids and Tight Wavelet Frames in L2(ℝd)subscript𝐿2superscriptℝ𝑑L_{2}(\mathbb{R}^{d})italic_L start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( blackboard_R start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT ). IEEE Transactions on Image Processing, 20(10):2705–2721, 2011. Vallières et al. 2015a M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. Data from: A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities, 2015a. Vallières et al. 2015b M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Phys. Med. Biol., 60(14):5471–5496, 2015b. van Griethuysen et al. 2017 J. J. M. van Griethuysen, A. Fedorov, C. Parmar, A. Hosny, N. Aucoin, V. Narayan, R. G. H. Beets-Tan, J.-C. Fillion-Robin, S. Pieper, and H. J. W. L. Aerts. Computational radiomics system to decode the radiographic phenotype. Cancer Res., 77(21):e104–e107, 2017. Weiler et al. 2018a M. Weiler, M. Geiger, M. Welling, W. Boomsma, and T. Cohen. 3D steerable CNNs: Learning rotationally equivariant features in volumetric data. In Advances in Neural Information Processing Systems, volume 2018-December, pages 10381–10392. Neural information processing systems foundation, 2018a. Weiler et al. 2018b M. Weiler, F. A. Hamprecht, and M. Storath. Learning Steerable Filters for Rotation Equivariant CNNs. CoRR, abs/1711.0, 2018b. Whybra et al. 2024 P. Whybra, A. Zwanenburg, V. Andrearczyk, R. Schaer, A. P. Apte, A. Ayotte, B. Baheti, S. Bakas, A. Bettinelli, R. Boellaard, L. Boldrini, I. Buvat, G. J. R. Cook, F. Dietsche, N. Dinapoli, H. S. Gabryś, V. Goh, M. Guckenberger, M. Hatt, M. Hosseinzadeh, A. Iyer, J. Lenkowicz, M. A. L. Loutfi, S. Löck, F. Marturano, O. Morin, C. Nioche, F. Orlhac, S. Pati, A. Rahmim, S. M. Rezaeijo, C. G. Rookyard, M. R. Salmanpour, A. Schindele, I. Shiri, E. Spezi, S. Tanadini-Lang, F. Tixier, T. Upadhaya, V. Valentini, J. J. M. van Griethuysen, F. Yousefirizi, H. Zaidi, H. Müller, M. Vallières, and A. Depeursinge. The image biomarker standardization initiative: Standardized convolutional filters for reproducible radiomics and enhanced clinical insights. Radiology, 310(2):e231319, 2024. Winkels and Cohen 2019 M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. P. M. Szczypiński and A. Klepaczko. MaZda – A Framework for Biomedical Image Texture Analysis and Data Exploration. In Biomedical Texture Analysis, pages 315–347. Elsevier, 2017. Tamura et al. 1978 H. Tamura, S. Mori, and T. Yamawaki. Textural Features Corresponding to Visual Perception. IEEE Transactions on Systems, Man and Cybernetics, 8(6):460–473, 1978. Tustison et al. 2010 N. J. Tustison, B. B. Avants, P. A. Cook, Y. Zheng, A. Egan, P. A. Yushkevich, and J. C. Gee. N4ITK: improved N3 bias correction. IEEE Trans. Med. Imaging, 29(6):1310–1320, 2010. Unser 2012 M. Unser. Image Processing I and II. Ecole polytechnique fédérale de Lausanne (EPFL), 2012. Unser and Van De Ville 2010 M. Unser and D. Van De Ville. Wavelet steerability and the higher-order Riesz transform. IEEE Transactions on Image Processing, 19(3):636–652, 2010. Unser et al. 2011 M. Unser, N. Chenouard, and D. Van De Ville. Steerable Pyramids and Tight Wavelet Frames in L2(ℝd)subscript𝐿2superscriptℝ𝑑L_{2}(\mathbb{R}^{d})italic_L start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( blackboard_R start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT ). IEEE Transactions on Image Processing, 20(10):2705–2721, 2011. Vallières et al. 2015a M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. Data from: A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities, 2015a. Vallières et al. 2015b M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Phys. Med. Biol., 60(14):5471–5496, 2015b. van Griethuysen et al. 2017 J. J. M. van Griethuysen, A. Fedorov, C. Parmar, A. Hosny, N. Aucoin, V. Narayan, R. G. H. Beets-Tan, J.-C. Fillion-Robin, S. Pieper, and H. J. W. L. Aerts. Computational radiomics system to decode the radiographic phenotype. Cancer Res., 77(21):e104–e107, 2017. Weiler et al. 2018a M. Weiler, M. Geiger, M. Welling, W. Boomsma, and T. Cohen. 3D steerable CNNs: Learning rotationally equivariant features in volumetric data. In Advances in Neural Information Processing Systems, volume 2018-December, pages 10381–10392. Neural information processing systems foundation, 2018a. Weiler et al. 2018b M. Weiler, F. A. Hamprecht, and M. Storath. Learning Steerable Filters for Rotation Equivariant CNNs. CoRR, abs/1711.0, 2018b. Whybra et al. 2024 P. Whybra, A. Zwanenburg, V. Andrearczyk, R. Schaer, A. P. Apte, A. Ayotte, B. Baheti, S. Bakas, A. Bettinelli, R. Boellaard, L. Boldrini, I. Buvat, G. J. R. Cook, F. Dietsche, N. Dinapoli, H. S. Gabryś, V. Goh, M. Guckenberger, M. Hatt, M. Hosseinzadeh, A. Iyer, J. Lenkowicz, M. A. L. Loutfi, S. Löck, F. Marturano, O. Morin, C. Nioche, F. Orlhac, S. Pati, A. Rahmim, S. M. Rezaeijo, C. G. Rookyard, M. R. Salmanpour, A. Schindele, I. Shiri, E. Spezi, S. Tanadini-Lang, F. Tixier, T. Upadhaya, V. Valentini, J. J. M. van Griethuysen, F. Yousefirizi, H. Zaidi, H. Müller, M. Vallières, and A. Depeursinge. The image biomarker standardization initiative: Standardized convolutional filters for reproducible radiomics and enhanced clinical insights. Radiology, 310(2):e231319, 2024. Winkels and Cohen 2019 M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. H. Tamura, S. Mori, and T. Yamawaki. Textural Features Corresponding to Visual Perception. IEEE Transactions on Systems, Man and Cybernetics, 8(6):460–473, 1978. Tustison et al. 2010 N. J. Tustison, B. B. Avants, P. A. Cook, Y. Zheng, A. Egan, P. A. Yushkevich, and J. C. Gee. N4ITK: improved N3 bias correction. IEEE Trans. Med. Imaging, 29(6):1310–1320, 2010. Unser 2012 M. Unser. Image Processing I and II. Ecole polytechnique fédérale de Lausanne (EPFL), 2012. Unser and Van De Ville 2010 M. Unser and D. Van De Ville. Wavelet steerability and the higher-order Riesz transform. IEEE Transactions on Image Processing, 19(3):636–652, 2010. Unser et al. 2011 M. Unser, N. Chenouard, and D. Van De Ville. Steerable Pyramids and Tight Wavelet Frames in L2(ℝd)subscript𝐿2superscriptℝ𝑑L_{2}(\mathbb{R}^{d})italic_L start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( blackboard_R start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT ). IEEE Transactions on Image Processing, 20(10):2705–2721, 2011. Vallières et al. 2015a M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. Data from: A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities, 2015a. Vallières et al. 2015b M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Phys. Med. Biol., 60(14):5471–5496, 2015b. van Griethuysen et al. 2017 J. J. M. van Griethuysen, A. Fedorov, C. Parmar, A. Hosny, N. Aucoin, V. Narayan, R. G. H. Beets-Tan, J.-C. Fillion-Robin, S. Pieper, and H. J. W. L. Aerts. Computational radiomics system to decode the radiographic phenotype. Cancer Res., 77(21):e104–e107, 2017. Weiler et al. 2018a M. Weiler, M. Geiger, M. Welling, W. Boomsma, and T. Cohen. 3D steerable CNNs: Learning rotationally equivariant features in volumetric data. In Advances in Neural Information Processing Systems, volume 2018-December, pages 10381–10392. Neural information processing systems foundation, 2018a. Weiler et al. 2018b M. Weiler, F. A. Hamprecht, and M. Storath. Learning Steerable Filters for Rotation Equivariant CNNs. CoRR, abs/1711.0, 2018b. Whybra et al. 2024 P. Whybra, A. Zwanenburg, V. Andrearczyk, R. Schaer, A. P. Apte, A. Ayotte, B. Baheti, S. Bakas, A. Bettinelli, R. Boellaard, L. Boldrini, I. Buvat, G. J. R. Cook, F. Dietsche, N. Dinapoli, H. S. Gabryś, V. Goh, M. Guckenberger, M. Hatt, M. Hosseinzadeh, A. Iyer, J. Lenkowicz, M. A. L. Loutfi, S. Löck, F. Marturano, O. Morin, C. Nioche, F. Orlhac, S. Pati, A. Rahmim, S. M. Rezaeijo, C. G. Rookyard, M. R. Salmanpour, A. Schindele, I. Shiri, E. Spezi, S. Tanadini-Lang, F. Tixier, T. Upadhaya, V. Valentini, J. J. M. van Griethuysen, F. Yousefirizi, H. Zaidi, H. Müller, M. Vallières, and A. Depeursinge. The image biomarker standardization initiative: Standardized convolutional filters for reproducible radiomics and enhanced clinical insights. Radiology, 310(2):e231319, 2024. Winkels and Cohen 2019 M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. N. J. Tustison, B. B. Avants, P. A. Cook, Y. Zheng, A. Egan, P. A. Yushkevich, and J. C. Gee. N4ITK: improved N3 bias correction. IEEE Trans. Med. Imaging, 29(6):1310–1320, 2010. Unser 2012 M. Unser. Image Processing I and II. Ecole polytechnique fédérale de Lausanne (EPFL), 2012. Unser and Van De Ville 2010 M. Unser and D. Van De Ville. Wavelet steerability and the higher-order Riesz transform. IEEE Transactions on Image Processing, 19(3):636–652, 2010. Unser et al. 2011 M. Unser, N. Chenouard, and D. Van De Ville. Steerable Pyramids and Tight Wavelet Frames in L2(ℝd)subscript𝐿2superscriptℝ𝑑L_{2}(\mathbb{R}^{d})italic_L start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( blackboard_R start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT ). IEEE Transactions on Image Processing, 20(10):2705–2721, 2011. Vallières et al. 2015a M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. Data from: A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities, 2015a. Vallières et al. 2015b M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Phys. Med. Biol., 60(14):5471–5496, 2015b. van Griethuysen et al. 2017 J. J. M. van Griethuysen, A. Fedorov, C. Parmar, A. Hosny, N. Aucoin, V. Narayan, R. G. H. Beets-Tan, J.-C. Fillion-Robin, S. Pieper, and H. J. W. L. Aerts. Computational radiomics system to decode the radiographic phenotype. Cancer Res., 77(21):e104–e107, 2017. Weiler et al. 2018a M. Weiler, M. Geiger, M. Welling, W. Boomsma, and T. Cohen. 3D steerable CNNs: Learning rotationally equivariant features in volumetric data. In Advances in Neural Information Processing Systems, volume 2018-December, pages 10381–10392. Neural information processing systems foundation, 2018a. Weiler et al. 2018b M. Weiler, F. A. Hamprecht, and M. Storath. Learning Steerable Filters for Rotation Equivariant CNNs. CoRR, abs/1711.0, 2018b. Whybra et al. 2024 P. Whybra, A. Zwanenburg, V. Andrearczyk, R. Schaer, A. P. Apte, A. Ayotte, B. Baheti, S. Bakas, A. Bettinelli, R. Boellaard, L. Boldrini, I. Buvat, G. J. R. Cook, F. Dietsche, N. Dinapoli, H. S. Gabryś, V. Goh, M. Guckenberger, M. Hatt, M. Hosseinzadeh, A. Iyer, J. Lenkowicz, M. A. L. Loutfi, S. Löck, F. Marturano, O. Morin, C. Nioche, F. Orlhac, S. Pati, A. Rahmim, S. M. Rezaeijo, C. G. Rookyard, M. R. Salmanpour, A. Schindele, I. Shiri, E. Spezi, S. Tanadini-Lang, F. Tixier, T. Upadhaya, V. Valentini, J. J. M. van Griethuysen, F. Yousefirizi, H. Zaidi, H. Müller, M. Vallières, and A. Depeursinge. The image biomarker standardization initiative: Standardized convolutional filters for reproducible radiomics and enhanced clinical insights. Radiology, 310(2):e231319, 2024. Winkels and Cohen 2019 M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. M. Unser. Image Processing I and II. Ecole polytechnique fédérale de Lausanne (EPFL), 2012. Unser and Van De Ville 2010 M. Unser and D. Van De Ville. Wavelet steerability and the higher-order Riesz transform. IEEE Transactions on Image Processing, 19(3):636–652, 2010. Unser et al. 2011 M. Unser, N. Chenouard, and D. Van De Ville. Steerable Pyramids and Tight Wavelet Frames in L2(ℝd)subscript𝐿2superscriptℝ𝑑L_{2}(\mathbb{R}^{d})italic_L start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( blackboard_R start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT ). IEEE Transactions on Image Processing, 20(10):2705–2721, 2011. Vallières et al. 2015a M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. Data from: A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities, 2015a. Vallières et al. 2015b M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Phys. Med. Biol., 60(14):5471–5496, 2015b. van Griethuysen et al. 2017 J. J. M. van Griethuysen, A. Fedorov, C. Parmar, A. Hosny, N. Aucoin, V. Narayan, R. G. H. Beets-Tan, J.-C. Fillion-Robin, S. Pieper, and H. J. W. L. Aerts. Computational radiomics system to decode the radiographic phenotype. Cancer Res., 77(21):e104–e107, 2017. Weiler et al. 2018a M. Weiler, M. Geiger, M. Welling, W. Boomsma, and T. Cohen. 3D steerable CNNs: Learning rotationally equivariant features in volumetric data. In Advances in Neural Information Processing Systems, volume 2018-December, pages 10381–10392. Neural information processing systems foundation, 2018a. Weiler et al. 2018b M. Weiler, F. A. Hamprecht, and M. Storath. Learning Steerable Filters for Rotation Equivariant CNNs. CoRR, abs/1711.0, 2018b. Whybra et al. 2024 P. Whybra, A. Zwanenburg, V. Andrearczyk, R. Schaer, A. P. Apte, A. Ayotte, B. Baheti, S. Bakas, A. Bettinelli, R. Boellaard, L. Boldrini, I. Buvat, G. J. R. Cook, F. Dietsche, N. Dinapoli, H. S. Gabryś, V. Goh, M. Guckenberger, M. Hatt, M. Hosseinzadeh, A. Iyer, J. Lenkowicz, M. A. L. Loutfi, S. Löck, F. Marturano, O. Morin, C. Nioche, F. Orlhac, S. Pati, A. Rahmim, S. M. Rezaeijo, C. G. Rookyard, M. R. Salmanpour, A. Schindele, I. Shiri, E. Spezi, S. Tanadini-Lang, F. Tixier, T. Upadhaya, V. Valentini, J. J. M. van Griethuysen, F. Yousefirizi, H. Zaidi, H. Müller, M. Vallières, and A. Depeursinge. The image biomarker standardization initiative: Standardized convolutional filters for reproducible radiomics and enhanced clinical insights. Radiology, 310(2):e231319, 2024. Winkels and Cohen 2019 M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. M. Unser and D. Van De Ville. Wavelet steerability and the higher-order Riesz transform. IEEE Transactions on Image Processing, 19(3):636–652, 2010. Unser et al. 2011 M. Unser, N. Chenouard, and D. Van De Ville. Steerable Pyramids and Tight Wavelet Frames in L2(ℝd)subscript𝐿2superscriptℝ𝑑L_{2}(\mathbb{R}^{d})italic_L start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( blackboard_R start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT ). IEEE Transactions on Image Processing, 20(10):2705–2721, 2011. Vallières et al. 2015a M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. Data from: A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities, 2015a. Vallières et al. 2015b M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Phys. Med. Biol., 60(14):5471–5496, 2015b. van Griethuysen et al. 2017 J. J. M. van Griethuysen, A. Fedorov, C. Parmar, A. Hosny, N. Aucoin, V. Narayan, R. G. H. Beets-Tan, J.-C. Fillion-Robin, S. Pieper, and H. J. W. L. Aerts. Computational radiomics system to decode the radiographic phenotype. Cancer Res., 77(21):e104–e107, 2017. Weiler et al. 2018a M. Weiler, M. Geiger, M. Welling, W. Boomsma, and T. Cohen. 3D steerable CNNs: Learning rotationally equivariant features in volumetric data. In Advances in Neural Information Processing Systems, volume 2018-December, pages 10381–10392. Neural information processing systems foundation, 2018a. Weiler et al. 2018b M. Weiler, F. A. Hamprecht, and M. Storath. Learning Steerable Filters for Rotation Equivariant CNNs. CoRR, abs/1711.0, 2018b. Whybra et al. 2024 P. Whybra, A. Zwanenburg, V. Andrearczyk, R. Schaer, A. P. Apte, A. Ayotte, B. Baheti, S. Bakas, A. Bettinelli, R. Boellaard, L. Boldrini, I. Buvat, G. J. R. Cook, F. Dietsche, N. Dinapoli, H. S. Gabryś, V. Goh, M. Guckenberger, M. Hatt, M. Hosseinzadeh, A. Iyer, J. Lenkowicz, M. A. L. Loutfi, S. Löck, F. Marturano, O. Morin, C. Nioche, F. Orlhac, S. Pati, A. Rahmim, S. M. Rezaeijo, C. G. Rookyard, M. R. Salmanpour, A. Schindele, I. Shiri, E. Spezi, S. Tanadini-Lang, F. Tixier, T. Upadhaya, V. Valentini, J. J. M. van Griethuysen, F. Yousefirizi, H. Zaidi, H. Müller, M. Vallières, and A. Depeursinge. The image biomarker standardization initiative: Standardized convolutional filters for reproducible radiomics and enhanced clinical insights. Radiology, 310(2):e231319, 2024. Winkels and Cohen 2019 M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. M. Unser, N. Chenouard, and D. Van De Ville. Steerable Pyramids and Tight Wavelet Frames in L2(ℝd)subscript𝐿2superscriptℝ𝑑L_{2}(\mathbb{R}^{d})italic_L start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( blackboard_R start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT ). IEEE Transactions on Image Processing, 20(10):2705–2721, 2011. Vallières et al. 2015a M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. Data from: A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities, 2015a. Vallières et al. 2015b M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Phys. Med. Biol., 60(14):5471–5496, 2015b. van Griethuysen et al. 2017 J. J. M. van Griethuysen, A. Fedorov, C. Parmar, A. Hosny, N. Aucoin, V. Narayan, R. G. H. Beets-Tan, J.-C. Fillion-Robin, S. Pieper, and H. J. W. L. Aerts. Computational radiomics system to decode the radiographic phenotype. Cancer Res., 77(21):e104–e107, 2017. Weiler et al. 2018a M. Weiler, M. Geiger, M. Welling, W. Boomsma, and T. Cohen. 3D steerable CNNs: Learning rotationally equivariant features in volumetric data. In Advances in Neural Information Processing Systems, volume 2018-December, pages 10381–10392. Neural information processing systems foundation, 2018a. Weiler et al. 2018b M. Weiler, F. A. Hamprecht, and M. Storath. Learning Steerable Filters for Rotation Equivariant CNNs. CoRR, abs/1711.0, 2018b. Whybra et al. 2024 P. Whybra, A. Zwanenburg, V. Andrearczyk, R. Schaer, A. P. Apte, A. Ayotte, B. Baheti, S. Bakas, A. Bettinelli, R. Boellaard, L. Boldrini, I. Buvat, G. J. R. Cook, F. Dietsche, N. Dinapoli, H. S. Gabryś, V. Goh, M. Guckenberger, M. Hatt, M. Hosseinzadeh, A. Iyer, J. Lenkowicz, M. A. L. Loutfi, S. Löck, F. Marturano, O. Morin, C. Nioche, F. Orlhac, S. Pati, A. Rahmim, S. M. Rezaeijo, C. G. Rookyard, M. R. Salmanpour, A. Schindele, I. Shiri, E. Spezi, S. Tanadini-Lang, F. Tixier, T. Upadhaya, V. Valentini, J. J. M. van Griethuysen, F. Yousefirizi, H. Zaidi, H. Müller, M. Vallières, and A. Depeursinge. The image biomarker standardization initiative: Standardized convolutional filters for reproducible radiomics and enhanced clinical insights. Radiology, 310(2):e231319, 2024. Winkels and Cohen 2019 M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. Data from: A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities, 2015a. Vallières et al. 2015b M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Phys. Med. Biol., 60(14):5471–5496, 2015b. van Griethuysen et al. 2017 J. J. M. van Griethuysen, A. Fedorov, C. Parmar, A. Hosny, N. Aucoin, V. Narayan, R. G. H. Beets-Tan, J.-C. Fillion-Robin, S. Pieper, and H. J. W. L. Aerts. Computational radiomics system to decode the radiographic phenotype. Cancer Res., 77(21):e104–e107, 2017. Weiler et al. 2018a M. Weiler, M. Geiger, M. Welling, W. Boomsma, and T. Cohen. 3D steerable CNNs: Learning rotationally equivariant features in volumetric data. In Advances in Neural Information Processing Systems, volume 2018-December, pages 10381–10392. Neural information processing systems foundation, 2018a. Weiler et al. 2018b M. Weiler, F. A. Hamprecht, and M. Storath. Learning Steerable Filters for Rotation Equivariant CNNs. CoRR, abs/1711.0, 2018b. Whybra et al. 2024 P. Whybra, A. Zwanenburg, V. Andrearczyk, R. Schaer, A. P. Apte, A. Ayotte, B. Baheti, S. Bakas, A. Bettinelli, R. Boellaard, L. Boldrini, I. Buvat, G. J. R. Cook, F. Dietsche, N. Dinapoli, H. S. Gabryś, V. Goh, M. Guckenberger, M. Hatt, M. Hosseinzadeh, A. Iyer, J. Lenkowicz, M. A. L. Loutfi, S. Löck, F. Marturano, O. Morin, C. Nioche, F. Orlhac, S. Pati, A. Rahmim, S. M. Rezaeijo, C. G. Rookyard, M. R. Salmanpour, A. Schindele, I. Shiri, E. Spezi, S. Tanadini-Lang, F. Tixier, T. Upadhaya, V. Valentini, J. J. M. van Griethuysen, F. Yousefirizi, H. Zaidi, H. Müller, M. Vallières, and A. Depeursinge. The image biomarker standardization initiative: Standardized convolutional filters for reproducible radiomics and enhanced clinical insights. Radiology, 310(2):e231319, 2024. Winkels and Cohen 2019 M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Phys. Med. Biol., 60(14):5471–5496, 2015b. van Griethuysen et al. 2017 J. J. M. van Griethuysen, A. Fedorov, C. Parmar, A. Hosny, N. Aucoin, V. Narayan, R. G. H. Beets-Tan, J.-C. Fillion-Robin, S. Pieper, and H. J. W. L. Aerts. Computational radiomics system to decode the radiographic phenotype. Cancer Res., 77(21):e104–e107, 2017. Weiler et al. 2018a M. Weiler, M. Geiger, M. Welling, W. Boomsma, and T. Cohen. 3D steerable CNNs: Learning rotationally equivariant features in volumetric data. In Advances in Neural Information Processing Systems, volume 2018-December, pages 10381–10392. Neural information processing systems foundation, 2018a. Weiler et al. 2018b M. Weiler, F. A. Hamprecht, and M. Storath. Learning Steerable Filters for Rotation Equivariant CNNs. CoRR, abs/1711.0, 2018b. Whybra et al. 2024 P. Whybra, A. Zwanenburg, V. Andrearczyk, R. Schaer, A. P. Apte, A. Ayotte, B. Baheti, S. Bakas, A. Bettinelli, R. Boellaard, L. Boldrini, I. Buvat, G. J. R. Cook, F. Dietsche, N. Dinapoli, H. S. Gabryś, V. Goh, M. Guckenberger, M. Hatt, M. Hosseinzadeh, A. Iyer, J. Lenkowicz, M. A. L. Loutfi, S. Löck, F. Marturano, O. Morin, C. Nioche, F. Orlhac, S. Pati, A. Rahmim, S. M. Rezaeijo, C. G. Rookyard, M. R. Salmanpour, A. Schindele, I. Shiri, E. Spezi, S. Tanadini-Lang, F. Tixier, T. Upadhaya, V. Valentini, J. J. M. van Griethuysen, F. Yousefirizi, H. Zaidi, H. Müller, M. Vallières, and A. Depeursinge. The image biomarker standardization initiative: Standardized convolutional filters for reproducible radiomics and enhanced clinical insights. Radiology, 310(2):e231319, 2024. Winkels and Cohen 2019 M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. J. J. M. van Griethuysen, A. Fedorov, C. Parmar, A. Hosny, N. Aucoin, V. Narayan, R. G. H. Beets-Tan, J.-C. Fillion-Robin, S. Pieper, and H. J. W. L. Aerts. Computational radiomics system to decode the radiographic phenotype. Cancer Res., 77(21):e104–e107, 2017. Weiler et al. 2018a M. Weiler, M. Geiger, M. Welling, W. Boomsma, and T. Cohen. 3D steerable CNNs: Learning rotationally equivariant features in volumetric data. In Advances in Neural Information Processing Systems, volume 2018-December, pages 10381–10392. Neural information processing systems foundation, 2018a. Weiler et al. 2018b M. Weiler, F. A. Hamprecht, and M. Storath. Learning Steerable Filters for Rotation Equivariant CNNs. CoRR, abs/1711.0, 2018b. Whybra et al. 2024 P. Whybra, A. Zwanenburg, V. Andrearczyk, R. Schaer, A. P. Apte, A. Ayotte, B. Baheti, S. Bakas, A. Bettinelli, R. Boellaard, L. Boldrini, I. Buvat, G. J. R. Cook, F. Dietsche, N. Dinapoli, H. S. Gabryś, V. Goh, M. Guckenberger, M. Hatt, M. Hosseinzadeh, A. Iyer, J. Lenkowicz, M. A. L. Loutfi, S. Löck, F. Marturano, O. Morin, C. Nioche, F. Orlhac, S. Pati, A. Rahmim, S. M. Rezaeijo, C. G. Rookyard, M. R. Salmanpour, A. Schindele, I. Shiri, E. Spezi, S. Tanadini-Lang, F. Tixier, T. Upadhaya, V. Valentini, J. J. M. van Griethuysen, F. Yousefirizi, H. Zaidi, H. Müller, M. Vallières, and A. Depeursinge. The image biomarker standardization initiative: Standardized convolutional filters for reproducible radiomics and enhanced clinical insights. Radiology, 310(2):e231319, 2024. Winkels and Cohen 2019 M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. M. Weiler, M. Geiger, M. Welling, W. Boomsma, and T. Cohen. 3D steerable CNNs: Learning rotationally equivariant features in volumetric data. In Advances in Neural Information Processing Systems, volume 2018-December, pages 10381–10392. Neural information processing systems foundation, 2018a. Weiler et al. 2018b M. Weiler, F. A. Hamprecht, and M. Storath. Learning Steerable Filters for Rotation Equivariant CNNs. CoRR, abs/1711.0, 2018b. Whybra et al. 2024 P. Whybra, A. Zwanenburg, V. Andrearczyk, R. Schaer, A. P. Apte, A. Ayotte, B. Baheti, S. Bakas, A. Bettinelli, R. Boellaard, L. Boldrini, I. Buvat, G. J. R. Cook, F. Dietsche, N. Dinapoli, H. S. Gabryś, V. Goh, M. Guckenberger, M. Hatt, M. Hosseinzadeh, A. Iyer, J. Lenkowicz, M. A. L. Loutfi, S. Löck, F. Marturano, O. Morin, C. Nioche, F. Orlhac, S. Pati, A. Rahmim, S. M. Rezaeijo, C. G. Rookyard, M. R. Salmanpour, A. Schindele, I. Shiri, E. Spezi, S. Tanadini-Lang, F. Tixier, T. Upadhaya, V. Valentini, J. J. M. van Griethuysen, F. Yousefirizi, H. Zaidi, H. Müller, M. Vallières, and A. Depeursinge. The image biomarker standardization initiative: Standardized convolutional filters for reproducible radiomics and enhanced clinical insights. Radiology, 310(2):e231319, 2024. Winkels and Cohen 2019 M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. M. Weiler, F. A. Hamprecht, and M. Storath. Learning Steerable Filters for Rotation Equivariant CNNs. CoRR, abs/1711.0, 2018b. Whybra et al. 2024 P. Whybra, A. Zwanenburg, V. Andrearczyk, R. Schaer, A. P. Apte, A. Ayotte, B. Baheti, S. Bakas, A. Bettinelli, R. Boellaard, L. Boldrini, I. Buvat, G. J. R. Cook, F. Dietsche, N. Dinapoli, H. S. Gabryś, V. Goh, M. Guckenberger, M. Hatt, M. Hosseinzadeh, A. Iyer, J. Lenkowicz, M. A. L. Loutfi, S. Löck, F. Marturano, O. Morin, C. Nioche, F. Orlhac, S. Pati, A. Rahmim, S. M. Rezaeijo, C. G. Rookyard, M. R. Salmanpour, A. Schindele, I. Shiri, E. Spezi, S. Tanadini-Lang, F. Tixier, T. Upadhaya, V. Valentini, J. J. M. van Griethuysen, F. Yousefirizi, H. Zaidi, H. Müller, M. Vallières, and A. Depeursinge. The image biomarker standardization initiative: Standardized convolutional filters for reproducible radiomics and enhanced clinical insights. Radiology, 310(2):e231319, 2024. Winkels and Cohen 2019 M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. P. Whybra, A. Zwanenburg, V. Andrearczyk, R. Schaer, A. P. Apte, A. Ayotte, B. Baheti, S. Bakas, A. Bettinelli, R. Boellaard, L. Boldrini, I. Buvat, G. J. R. Cook, F. Dietsche, N. Dinapoli, H. S. Gabryś, V. Goh, M. Guckenberger, M. Hatt, M. Hosseinzadeh, A. Iyer, J. Lenkowicz, M. A. L. Loutfi, S. Löck, F. Marturano, O. Morin, C. Nioche, F. Orlhac, S. Pati, A. Rahmim, S. M. Rezaeijo, C. G. Rookyard, M. R. Salmanpour, A. Schindele, I. Shiri, E. Spezi, S. Tanadini-Lang, F. Tixier, T. Upadhaya, V. Valentini, J. J. M. van Griethuysen, F. Yousefirizi, H. Zaidi, H. Müller, M. Vallières, and A. Depeursinge. The image biomarker standardization initiative: Standardized convolutional filters for reproducible radiomics and enhanced clinical insights. Radiology, 310(2):e231319, 2024. Winkels and Cohen 2019 M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020.
- Co-occurrence of Local Anisotropic Gradient Orientations (CoLlAGe): Distinguishing tumor confounders and molecular subtypes on MRI. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), volume 8675 LNCS, pages 73–80. Springer Verlag, 2014. Qian et al. 2006 Z. Qian, D. N. Metaxas, and L. Axel. Extraction and Tracking of MRI Tagging Sheets Using a 3D Gabor Filter Bank. In 2006 International Conference of the IEEE Engineering in Medicine and Biology Society, pages 711–714. IEEE, 2006. Szczypiński and Klepaczko 2017 P. M. Szczypiński and A. Klepaczko. MaZda – A Framework for Biomedical Image Texture Analysis and Data Exploration. In Biomedical Texture Analysis, pages 315–347. Elsevier, 2017. Tamura et al. 1978 H. Tamura, S. Mori, and T. Yamawaki. Textural Features Corresponding to Visual Perception. IEEE Transactions on Systems, Man and Cybernetics, 8(6):460–473, 1978. Tustison et al. 2010 N. J. Tustison, B. B. Avants, P. A. Cook, Y. Zheng, A. Egan, P. A. Yushkevich, and J. C. Gee. N4ITK: improved N3 bias correction. IEEE Trans. Med. Imaging, 29(6):1310–1320, 2010. Unser 2012 M. Unser. Image Processing I and II. Ecole polytechnique fédérale de Lausanne (EPFL), 2012. Unser and Van De Ville 2010 M. Unser and D. Van De Ville. Wavelet steerability and the higher-order Riesz transform. IEEE Transactions on Image Processing, 19(3):636–652, 2010. Unser et al. 2011 M. Unser, N. Chenouard, and D. Van De Ville. Steerable Pyramids and Tight Wavelet Frames in L2(ℝd)subscript𝐿2superscriptℝ𝑑L_{2}(\mathbb{R}^{d})italic_L start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( blackboard_R start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT ). IEEE Transactions on Image Processing, 20(10):2705–2721, 2011. Vallières et al. 2015a M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. Data from: A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities, 2015a. Vallières et al. 2015b M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Phys. Med. Biol., 60(14):5471–5496, 2015b. van Griethuysen et al. 2017 J. J. M. van Griethuysen, A. Fedorov, C. Parmar, A. Hosny, N. Aucoin, V. Narayan, R. G. H. Beets-Tan, J.-C. Fillion-Robin, S. Pieper, and H. J. W. L. Aerts. Computational radiomics system to decode the radiographic phenotype. Cancer Res., 77(21):e104–e107, 2017. Weiler et al. 2018a M. Weiler, M. Geiger, M. Welling, W. Boomsma, and T. Cohen. 3D steerable CNNs: Learning rotationally equivariant features in volumetric data. In Advances in Neural Information Processing Systems, volume 2018-December, pages 10381–10392. Neural information processing systems foundation, 2018a. Weiler et al. 2018b M. Weiler, F. A. Hamprecht, and M. Storath. Learning Steerable Filters for Rotation Equivariant CNNs. CoRR, abs/1711.0, 2018b. Whybra et al. 2024 P. Whybra, A. Zwanenburg, V. Andrearczyk, R. Schaer, A. P. Apte, A. Ayotte, B. Baheti, S. Bakas, A. Bettinelli, R. Boellaard, L. Boldrini, I. Buvat, G. J. R. Cook, F. Dietsche, N. Dinapoli, H. S. Gabryś, V. Goh, M. Guckenberger, M. Hatt, M. Hosseinzadeh, A. Iyer, J. Lenkowicz, M. A. L. Loutfi, S. Löck, F. Marturano, O. Morin, C. Nioche, F. Orlhac, S. Pati, A. Rahmim, S. M. Rezaeijo, C. G. Rookyard, M. R. Salmanpour, A. Schindele, I. Shiri, E. Spezi, S. Tanadini-Lang, F. Tixier, T. Upadhaya, V. Valentini, J. J. M. van Griethuysen, F. Yousefirizi, H. Zaidi, H. Müller, M. Vallières, and A. Depeursinge. The image biomarker standardization initiative: Standardized convolutional filters for reproducible radiomics and enhanced clinical insights. Radiology, 310(2):e231319, 2024. Winkels and Cohen 2019 M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. Z. Qian, D. N. Metaxas, and L. Axel. Extraction and Tracking of MRI Tagging Sheets Using a 3D Gabor Filter Bank. In 2006 International Conference of the IEEE Engineering in Medicine and Biology Society, pages 711–714. IEEE, 2006. Szczypiński and Klepaczko 2017 P. M. Szczypiński and A. Klepaczko. MaZda – A Framework for Biomedical Image Texture Analysis and Data Exploration. In Biomedical Texture Analysis, pages 315–347. Elsevier, 2017. Tamura et al. 1978 H. Tamura, S. Mori, and T. Yamawaki. Textural Features Corresponding to Visual Perception. IEEE Transactions on Systems, Man and Cybernetics, 8(6):460–473, 1978. Tustison et al. 2010 N. J. Tustison, B. B. Avants, P. A. Cook, Y. Zheng, A. Egan, P. A. Yushkevich, and J. C. Gee. N4ITK: improved N3 bias correction. IEEE Trans. Med. Imaging, 29(6):1310–1320, 2010. Unser 2012 M. Unser. Image Processing I and II. Ecole polytechnique fédérale de Lausanne (EPFL), 2012. Unser and Van De Ville 2010 M. Unser and D. Van De Ville. Wavelet steerability and the higher-order Riesz transform. IEEE Transactions on Image Processing, 19(3):636–652, 2010. Unser et al. 2011 M. Unser, N. Chenouard, and D. Van De Ville. Steerable Pyramids and Tight Wavelet Frames in L2(ℝd)subscript𝐿2superscriptℝ𝑑L_{2}(\mathbb{R}^{d})italic_L start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( blackboard_R start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT ). IEEE Transactions on Image Processing, 20(10):2705–2721, 2011. Vallières et al. 2015a M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. Data from: A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities, 2015a. Vallières et al. 2015b M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Phys. Med. Biol., 60(14):5471–5496, 2015b. van Griethuysen et al. 2017 J. J. M. van Griethuysen, A. Fedorov, C. Parmar, A. Hosny, N. Aucoin, V. Narayan, R. G. H. Beets-Tan, J.-C. Fillion-Robin, S. Pieper, and H. J. W. L. Aerts. Computational radiomics system to decode the radiographic phenotype. Cancer Res., 77(21):e104–e107, 2017. Weiler et al. 2018a M. Weiler, M. Geiger, M. Welling, W. Boomsma, and T. Cohen. 3D steerable CNNs: Learning rotationally equivariant features in volumetric data. In Advances in Neural Information Processing Systems, volume 2018-December, pages 10381–10392. Neural information processing systems foundation, 2018a. Weiler et al. 2018b M. Weiler, F. A. Hamprecht, and M. Storath. Learning Steerable Filters for Rotation Equivariant CNNs. CoRR, abs/1711.0, 2018b. Whybra et al. 2024 P. Whybra, A. Zwanenburg, V. Andrearczyk, R. Schaer, A. P. Apte, A. Ayotte, B. Baheti, S. Bakas, A. Bettinelli, R. Boellaard, L. Boldrini, I. Buvat, G. J. R. Cook, F. Dietsche, N. Dinapoli, H. S. Gabryś, V. Goh, M. Guckenberger, M. Hatt, M. Hosseinzadeh, A. Iyer, J. Lenkowicz, M. A. L. Loutfi, S. Löck, F. Marturano, O. Morin, C. Nioche, F. Orlhac, S. Pati, A. Rahmim, S. M. Rezaeijo, C. G. Rookyard, M. R. Salmanpour, A. Schindele, I. Shiri, E. Spezi, S. Tanadini-Lang, F. Tixier, T. Upadhaya, V. Valentini, J. J. M. van Griethuysen, F. Yousefirizi, H. Zaidi, H. Müller, M. Vallières, and A. Depeursinge. The image biomarker standardization initiative: Standardized convolutional filters for reproducible radiomics and enhanced clinical insights. Radiology, 310(2):e231319, 2024. Winkels and Cohen 2019 M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. P. M. Szczypiński and A. Klepaczko. MaZda – A Framework for Biomedical Image Texture Analysis and Data Exploration. In Biomedical Texture Analysis, pages 315–347. Elsevier, 2017. Tamura et al. 1978 H. Tamura, S. Mori, and T. Yamawaki. Textural Features Corresponding to Visual Perception. IEEE Transactions on Systems, Man and Cybernetics, 8(6):460–473, 1978. Tustison et al. 2010 N. J. Tustison, B. B. Avants, P. A. Cook, Y. Zheng, A. Egan, P. A. Yushkevich, and J. C. Gee. N4ITK: improved N3 bias correction. IEEE Trans. Med. Imaging, 29(6):1310–1320, 2010. Unser 2012 M. Unser. Image Processing I and II. Ecole polytechnique fédérale de Lausanne (EPFL), 2012. Unser and Van De Ville 2010 M. Unser and D. Van De Ville. Wavelet steerability and the higher-order Riesz transform. IEEE Transactions on Image Processing, 19(3):636–652, 2010. Unser et al. 2011 M. Unser, N. Chenouard, and D. Van De Ville. Steerable Pyramids and Tight Wavelet Frames in L2(ℝd)subscript𝐿2superscriptℝ𝑑L_{2}(\mathbb{R}^{d})italic_L start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( blackboard_R start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT ). IEEE Transactions on Image Processing, 20(10):2705–2721, 2011. Vallières et al. 2015a M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. Data from: A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities, 2015a. Vallières et al. 2015b M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Phys. Med. Biol., 60(14):5471–5496, 2015b. van Griethuysen et al. 2017 J. J. M. van Griethuysen, A. Fedorov, C. Parmar, A. Hosny, N. Aucoin, V. Narayan, R. G. H. Beets-Tan, J.-C. Fillion-Robin, S. Pieper, and H. J. W. L. Aerts. Computational radiomics system to decode the radiographic phenotype. Cancer Res., 77(21):e104–e107, 2017. Weiler et al. 2018a M. Weiler, M. Geiger, M. Welling, W. Boomsma, and T. Cohen. 3D steerable CNNs: Learning rotationally equivariant features in volumetric data. In Advances in Neural Information Processing Systems, volume 2018-December, pages 10381–10392. Neural information processing systems foundation, 2018a. Weiler et al. 2018b M. Weiler, F. A. Hamprecht, and M. Storath. Learning Steerable Filters for Rotation Equivariant CNNs. CoRR, abs/1711.0, 2018b. Whybra et al. 2024 P. Whybra, A. Zwanenburg, V. Andrearczyk, R. Schaer, A. P. Apte, A. Ayotte, B. Baheti, S. Bakas, A. Bettinelli, R. Boellaard, L. Boldrini, I. Buvat, G. J. R. Cook, F. Dietsche, N. Dinapoli, H. S. Gabryś, V. Goh, M. Guckenberger, M. Hatt, M. Hosseinzadeh, A. Iyer, J. Lenkowicz, M. A. L. Loutfi, S. Löck, F. Marturano, O. Morin, C. Nioche, F. Orlhac, S. Pati, A. Rahmim, S. M. Rezaeijo, C. G. Rookyard, M. R. Salmanpour, A. Schindele, I. Shiri, E. Spezi, S. Tanadini-Lang, F. Tixier, T. Upadhaya, V. Valentini, J. J. M. van Griethuysen, F. Yousefirizi, H. Zaidi, H. Müller, M. Vallières, and A. Depeursinge. The image biomarker standardization initiative: Standardized convolutional filters for reproducible radiomics and enhanced clinical insights. Radiology, 310(2):e231319, 2024. Winkels and Cohen 2019 M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. H. Tamura, S. Mori, and T. Yamawaki. Textural Features Corresponding to Visual Perception. IEEE Transactions on Systems, Man and Cybernetics, 8(6):460–473, 1978. Tustison et al. 2010 N. J. Tustison, B. B. Avants, P. A. Cook, Y. Zheng, A. Egan, P. A. Yushkevich, and J. C. Gee. N4ITK: improved N3 bias correction. IEEE Trans. Med. Imaging, 29(6):1310–1320, 2010. Unser 2012 M. Unser. Image Processing I and II. Ecole polytechnique fédérale de Lausanne (EPFL), 2012. Unser and Van De Ville 2010 M. Unser and D. Van De Ville. Wavelet steerability and the higher-order Riesz transform. IEEE Transactions on Image Processing, 19(3):636–652, 2010. Unser et al. 2011 M. Unser, N. Chenouard, and D. Van De Ville. Steerable Pyramids and Tight Wavelet Frames in L2(ℝd)subscript𝐿2superscriptℝ𝑑L_{2}(\mathbb{R}^{d})italic_L start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( blackboard_R start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT ). IEEE Transactions on Image Processing, 20(10):2705–2721, 2011. Vallières et al. 2015a M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. Data from: A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities, 2015a. Vallières et al. 2015b M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Phys. Med. Biol., 60(14):5471–5496, 2015b. van Griethuysen et al. 2017 J. J. M. van Griethuysen, A. Fedorov, C. Parmar, A. Hosny, N. Aucoin, V. Narayan, R. G. H. Beets-Tan, J.-C. Fillion-Robin, S. Pieper, and H. J. W. L. Aerts. Computational radiomics system to decode the radiographic phenotype. Cancer Res., 77(21):e104–e107, 2017. Weiler et al. 2018a M. Weiler, M. Geiger, M. Welling, W. Boomsma, and T. Cohen. 3D steerable CNNs: Learning rotationally equivariant features in volumetric data. In Advances in Neural Information Processing Systems, volume 2018-December, pages 10381–10392. Neural information processing systems foundation, 2018a. Weiler et al. 2018b M. Weiler, F. A. Hamprecht, and M. Storath. Learning Steerable Filters for Rotation Equivariant CNNs. CoRR, abs/1711.0, 2018b. Whybra et al. 2024 P. Whybra, A. Zwanenburg, V. Andrearczyk, R. Schaer, A. P. Apte, A. Ayotte, B. Baheti, S. Bakas, A. Bettinelli, R. Boellaard, L. Boldrini, I. Buvat, G. J. R. Cook, F. Dietsche, N. Dinapoli, H. S. Gabryś, V. Goh, M. Guckenberger, M. Hatt, M. Hosseinzadeh, A. Iyer, J. Lenkowicz, M. A. L. Loutfi, S. Löck, F. Marturano, O. Morin, C. Nioche, F. Orlhac, S. Pati, A. Rahmim, S. M. Rezaeijo, C. G. Rookyard, M. R. Salmanpour, A. Schindele, I. Shiri, E. Spezi, S. Tanadini-Lang, F. Tixier, T. Upadhaya, V. Valentini, J. J. M. van Griethuysen, F. Yousefirizi, H. Zaidi, H. Müller, M. Vallières, and A. Depeursinge. The image biomarker standardization initiative: Standardized convolutional filters for reproducible radiomics and enhanced clinical insights. Radiology, 310(2):e231319, 2024. Winkels and Cohen 2019 M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. N. J. Tustison, B. B. Avants, P. A. Cook, Y. Zheng, A. Egan, P. A. Yushkevich, and J. C. Gee. N4ITK: improved N3 bias correction. IEEE Trans. Med. Imaging, 29(6):1310–1320, 2010. Unser 2012 M. Unser. Image Processing I and II. Ecole polytechnique fédérale de Lausanne (EPFL), 2012. Unser and Van De Ville 2010 M. Unser and D. Van De Ville. Wavelet steerability and the higher-order Riesz transform. IEEE Transactions on Image Processing, 19(3):636–652, 2010. Unser et al. 2011 M. Unser, N. Chenouard, and D. Van De Ville. Steerable Pyramids and Tight Wavelet Frames in L2(ℝd)subscript𝐿2superscriptℝ𝑑L_{2}(\mathbb{R}^{d})italic_L start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( blackboard_R start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT ). IEEE Transactions on Image Processing, 20(10):2705–2721, 2011. Vallières et al. 2015a M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. Data from: A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities, 2015a. Vallières et al. 2015b M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Phys. Med. Biol., 60(14):5471–5496, 2015b. van Griethuysen et al. 2017 J. J. M. van Griethuysen, A. Fedorov, C. Parmar, A. Hosny, N. Aucoin, V. Narayan, R. G. H. Beets-Tan, J.-C. Fillion-Robin, S. Pieper, and H. J. W. L. Aerts. Computational radiomics system to decode the radiographic phenotype. Cancer Res., 77(21):e104–e107, 2017. Weiler et al. 2018a M. Weiler, M. Geiger, M. Welling, W. Boomsma, and T. Cohen. 3D steerable CNNs: Learning rotationally equivariant features in volumetric data. In Advances in Neural Information Processing Systems, volume 2018-December, pages 10381–10392. Neural information processing systems foundation, 2018a. Weiler et al. 2018b M. Weiler, F. A. Hamprecht, and M. Storath. Learning Steerable Filters for Rotation Equivariant CNNs. CoRR, abs/1711.0, 2018b. Whybra et al. 2024 P. Whybra, A. Zwanenburg, V. Andrearczyk, R. Schaer, A. P. Apte, A. Ayotte, B. Baheti, S. Bakas, A. Bettinelli, R. Boellaard, L. Boldrini, I. Buvat, G. J. R. Cook, F. Dietsche, N. Dinapoli, H. S. Gabryś, V. Goh, M. Guckenberger, M. Hatt, M. Hosseinzadeh, A. Iyer, J. Lenkowicz, M. A. L. Loutfi, S. Löck, F. Marturano, O. Morin, C. Nioche, F. Orlhac, S. Pati, A. Rahmim, S. M. Rezaeijo, C. G. Rookyard, M. R. Salmanpour, A. Schindele, I. Shiri, E. Spezi, S. Tanadini-Lang, F. Tixier, T. Upadhaya, V. Valentini, J. J. M. van Griethuysen, F. Yousefirizi, H. Zaidi, H. Müller, M. Vallières, and A. Depeursinge. The image biomarker standardization initiative: Standardized convolutional filters for reproducible radiomics and enhanced clinical insights. Radiology, 310(2):e231319, 2024. Winkels and Cohen 2019 M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. M. Unser. Image Processing I and II. Ecole polytechnique fédérale de Lausanne (EPFL), 2012. Unser and Van De Ville 2010 M. Unser and D. Van De Ville. Wavelet steerability and the higher-order Riesz transform. IEEE Transactions on Image Processing, 19(3):636–652, 2010. Unser et al. 2011 M. Unser, N. Chenouard, and D. Van De Ville. Steerable Pyramids and Tight Wavelet Frames in L2(ℝd)subscript𝐿2superscriptℝ𝑑L_{2}(\mathbb{R}^{d})italic_L start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( blackboard_R start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT ). IEEE Transactions on Image Processing, 20(10):2705–2721, 2011. Vallières et al. 2015a M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. Data from: A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities, 2015a. Vallières et al. 2015b M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Phys. Med. Biol., 60(14):5471–5496, 2015b. van Griethuysen et al. 2017 J. J. M. van Griethuysen, A. Fedorov, C. Parmar, A. Hosny, N. Aucoin, V. Narayan, R. G. H. Beets-Tan, J.-C. Fillion-Robin, S. Pieper, and H. J. W. L. Aerts. Computational radiomics system to decode the radiographic phenotype. Cancer Res., 77(21):e104–e107, 2017. Weiler et al. 2018a M. Weiler, M. Geiger, M. Welling, W. Boomsma, and T. Cohen. 3D steerable CNNs: Learning rotationally equivariant features in volumetric data. In Advances in Neural Information Processing Systems, volume 2018-December, pages 10381–10392. Neural information processing systems foundation, 2018a. Weiler et al. 2018b M. Weiler, F. A. Hamprecht, and M. Storath. Learning Steerable Filters for Rotation Equivariant CNNs. CoRR, abs/1711.0, 2018b. Whybra et al. 2024 P. Whybra, A. Zwanenburg, V. Andrearczyk, R. Schaer, A. P. Apte, A. Ayotte, B. Baheti, S. Bakas, A. Bettinelli, R. Boellaard, L. Boldrini, I. Buvat, G. J. R. Cook, F. Dietsche, N. Dinapoli, H. S. Gabryś, V. Goh, M. Guckenberger, M. Hatt, M. Hosseinzadeh, A. Iyer, J. Lenkowicz, M. A. L. Loutfi, S. Löck, F. Marturano, O. Morin, C. Nioche, F. Orlhac, S. Pati, A. Rahmim, S. M. Rezaeijo, C. G. Rookyard, M. R. Salmanpour, A. Schindele, I. Shiri, E. Spezi, S. Tanadini-Lang, F. Tixier, T. Upadhaya, V. Valentini, J. J. M. van Griethuysen, F. Yousefirizi, H. Zaidi, H. Müller, M. Vallières, and A. Depeursinge. The image biomarker standardization initiative: Standardized convolutional filters for reproducible radiomics and enhanced clinical insights. Radiology, 310(2):e231319, 2024. Winkels and Cohen 2019 M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. M. Unser and D. Van De Ville. Wavelet steerability and the higher-order Riesz transform. IEEE Transactions on Image Processing, 19(3):636–652, 2010. Unser et al. 2011 M. Unser, N. Chenouard, and D. Van De Ville. Steerable Pyramids and Tight Wavelet Frames in L2(ℝd)subscript𝐿2superscriptℝ𝑑L_{2}(\mathbb{R}^{d})italic_L start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( blackboard_R start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT ). IEEE Transactions on Image Processing, 20(10):2705–2721, 2011. Vallières et al. 2015a M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. Data from: A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities, 2015a. Vallières et al. 2015b M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Phys. Med. Biol., 60(14):5471–5496, 2015b. van Griethuysen et al. 2017 J. J. M. van Griethuysen, A. Fedorov, C. Parmar, A. Hosny, N. Aucoin, V. Narayan, R. G. H. Beets-Tan, J.-C. Fillion-Robin, S. Pieper, and H. J. W. L. Aerts. Computational radiomics system to decode the radiographic phenotype. Cancer Res., 77(21):e104–e107, 2017. Weiler et al. 2018a M. Weiler, M. Geiger, M. Welling, W. Boomsma, and T. Cohen. 3D steerable CNNs: Learning rotationally equivariant features in volumetric data. In Advances in Neural Information Processing Systems, volume 2018-December, pages 10381–10392. Neural information processing systems foundation, 2018a. Weiler et al. 2018b M. Weiler, F. A. Hamprecht, and M. Storath. Learning Steerable Filters for Rotation Equivariant CNNs. CoRR, abs/1711.0, 2018b. Whybra et al. 2024 P. Whybra, A. Zwanenburg, V. Andrearczyk, R. Schaer, A. P. Apte, A. Ayotte, B. Baheti, S. Bakas, A. Bettinelli, R. Boellaard, L. Boldrini, I. Buvat, G. J. R. Cook, F. Dietsche, N. Dinapoli, H. S. Gabryś, V. Goh, M. Guckenberger, M. Hatt, M. Hosseinzadeh, A. Iyer, J. Lenkowicz, M. A. L. Loutfi, S. Löck, F. Marturano, O. Morin, C. Nioche, F. Orlhac, S. Pati, A. Rahmim, S. M. Rezaeijo, C. G. Rookyard, M. R. Salmanpour, A. Schindele, I. Shiri, E. Spezi, S. Tanadini-Lang, F. Tixier, T. Upadhaya, V. Valentini, J. J. M. van Griethuysen, F. Yousefirizi, H. Zaidi, H. Müller, M. Vallières, and A. Depeursinge. The image biomarker standardization initiative: Standardized convolutional filters for reproducible radiomics and enhanced clinical insights. Radiology, 310(2):e231319, 2024. Winkels and Cohen 2019 M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. M. Unser, N. Chenouard, and D. Van De Ville. Steerable Pyramids and Tight Wavelet Frames in L2(ℝd)subscript𝐿2superscriptℝ𝑑L_{2}(\mathbb{R}^{d})italic_L start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( blackboard_R start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT ). IEEE Transactions on Image Processing, 20(10):2705–2721, 2011. Vallières et al. 2015a M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. Data from: A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities, 2015a. Vallières et al. 2015b M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Phys. Med. Biol., 60(14):5471–5496, 2015b. van Griethuysen et al. 2017 J. J. M. van Griethuysen, A. Fedorov, C. Parmar, A. Hosny, N. Aucoin, V. Narayan, R. G. H. Beets-Tan, J.-C. Fillion-Robin, S. Pieper, and H. J. W. L. Aerts. Computational radiomics system to decode the radiographic phenotype. Cancer Res., 77(21):e104–e107, 2017. Weiler et al. 2018a M. Weiler, M. Geiger, M. Welling, W. Boomsma, and T. Cohen. 3D steerable CNNs: Learning rotationally equivariant features in volumetric data. In Advances in Neural Information Processing Systems, volume 2018-December, pages 10381–10392. Neural information processing systems foundation, 2018a. Weiler et al. 2018b M. Weiler, F. A. Hamprecht, and M. Storath. Learning Steerable Filters for Rotation Equivariant CNNs. CoRR, abs/1711.0, 2018b. Whybra et al. 2024 P. Whybra, A. Zwanenburg, V. Andrearczyk, R. Schaer, A. P. Apte, A. Ayotte, B. Baheti, S. Bakas, A. Bettinelli, R. Boellaard, L. Boldrini, I. Buvat, G. J. R. Cook, F. Dietsche, N. Dinapoli, H. S. Gabryś, V. Goh, M. Guckenberger, M. Hatt, M. Hosseinzadeh, A. Iyer, J. Lenkowicz, M. A. L. Loutfi, S. Löck, F. Marturano, O. Morin, C. Nioche, F. Orlhac, S. Pati, A. Rahmim, S. M. Rezaeijo, C. G. Rookyard, M. R. Salmanpour, A. Schindele, I. Shiri, E. Spezi, S. Tanadini-Lang, F. Tixier, T. Upadhaya, V. Valentini, J. J. M. van Griethuysen, F. Yousefirizi, H. Zaidi, H. Müller, M. Vallières, and A. Depeursinge. The image biomarker standardization initiative: Standardized convolutional filters for reproducible radiomics and enhanced clinical insights. Radiology, 310(2):e231319, 2024. Winkels and Cohen 2019 M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. Data from: A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities, 2015a. Vallières et al. 2015b M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Phys. Med. Biol., 60(14):5471–5496, 2015b. van Griethuysen et al. 2017 J. J. M. van Griethuysen, A. Fedorov, C. Parmar, A. Hosny, N. Aucoin, V. Narayan, R. G. H. Beets-Tan, J.-C. Fillion-Robin, S. Pieper, and H. J. W. L. Aerts. Computational radiomics system to decode the radiographic phenotype. Cancer Res., 77(21):e104–e107, 2017. Weiler et al. 2018a M. Weiler, M. Geiger, M. Welling, W. Boomsma, and T. Cohen. 3D steerable CNNs: Learning rotationally equivariant features in volumetric data. In Advances in Neural Information Processing Systems, volume 2018-December, pages 10381–10392. Neural information processing systems foundation, 2018a. Weiler et al. 2018b M. Weiler, F. A. Hamprecht, and M. Storath. Learning Steerable Filters for Rotation Equivariant CNNs. CoRR, abs/1711.0, 2018b. Whybra et al. 2024 P. Whybra, A. Zwanenburg, V. Andrearczyk, R. Schaer, A. P. Apte, A. Ayotte, B. Baheti, S. Bakas, A. Bettinelli, R. Boellaard, L. Boldrini, I. Buvat, G. J. R. Cook, F. Dietsche, N. Dinapoli, H. S. Gabryś, V. Goh, M. Guckenberger, M. Hatt, M. Hosseinzadeh, A. Iyer, J. Lenkowicz, M. A. L. Loutfi, S. Löck, F. Marturano, O. Morin, C. Nioche, F. Orlhac, S. Pati, A. Rahmim, S. M. Rezaeijo, C. G. Rookyard, M. R. Salmanpour, A. Schindele, I. Shiri, E. Spezi, S. Tanadini-Lang, F. Tixier, T. Upadhaya, V. Valentini, J. J. M. van Griethuysen, F. Yousefirizi, H. Zaidi, H. Müller, M. Vallières, and A. Depeursinge. The image biomarker standardization initiative: Standardized convolutional filters for reproducible radiomics and enhanced clinical insights. Radiology, 310(2):e231319, 2024. Winkels and Cohen 2019 M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Phys. Med. Biol., 60(14):5471–5496, 2015b. van Griethuysen et al. 2017 J. J. M. van Griethuysen, A. Fedorov, C. Parmar, A. Hosny, N. Aucoin, V. Narayan, R. G. H. Beets-Tan, J.-C. Fillion-Robin, S. Pieper, and H. J. W. L. Aerts. Computational radiomics system to decode the radiographic phenotype. Cancer Res., 77(21):e104–e107, 2017. Weiler et al. 2018a M. Weiler, M. Geiger, M. Welling, W. Boomsma, and T. Cohen. 3D steerable CNNs: Learning rotationally equivariant features in volumetric data. In Advances in Neural Information Processing Systems, volume 2018-December, pages 10381–10392. Neural information processing systems foundation, 2018a. Weiler et al. 2018b M. Weiler, F. A. Hamprecht, and M. Storath. Learning Steerable Filters for Rotation Equivariant CNNs. CoRR, abs/1711.0, 2018b. Whybra et al. 2024 P. Whybra, A. Zwanenburg, V. Andrearczyk, R. Schaer, A. P. Apte, A. Ayotte, B. Baheti, S. Bakas, A. Bettinelli, R. Boellaard, L. Boldrini, I. Buvat, G. J. R. Cook, F. Dietsche, N. Dinapoli, H. S. Gabryś, V. Goh, M. Guckenberger, M. Hatt, M. Hosseinzadeh, A. Iyer, J. Lenkowicz, M. A. L. Loutfi, S. Löck, F. Marturano, O. Morin, C. Nioche, F. Orlhac, S. Pati, A. Rahmim, S. M. Rezaeijo, C. G. Rookyard, M. R. Salmanpour, A. Schindele, I. Shiri, E. Spezi, S. Tanadini-Lang, F. Tixier, T. Upadhaya, V. Valentini, J. J. M. van Griethuysen, F. Yousefirizi, H. Zaidi, H. Müller, M. Vallières, and A. Depeursinge. The image biomarker standardization initiative: Standardized convolutional filters for reproducible radiomics and enhanced clinical insights. Radiology, 310(2):e231319, 2024. Winkels and Cohen 2019 M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. J. J. M. van Griethuysen, A. Fedorov, C. Parmar, A. Hosny, N. Aucoin, V. Narayan, R. G. H. Beets-Tan, J.-C. Fillion-Robin, S. Pieper, and H. J. W. L. Aerts. Computational radiomics system to decode the radiographic phenotype. Cancer Res., 77(21):e104–e107, 2017. Weiler et al. 2018a M. Weiler, M. Geiger, M. Welling, W. Boomsma, and T. Cohen. 3D steerable CNNs: Learning rotationally equivariant features in volumetric data. In Advances in Neural Information Processing Systems, volume 2018-December, pages 10381–10392. Neural information processing systems foundation, 2018a. Weiler et al. 2018b M. Weiler, F. A. Hamprecht, and M. Storath. Learning Steerable Filters for Rotation Equivariant CNNs. CoRR, abs/1711.0, 2018b. Whybra et al. 2024 P. Whybra, A. Zwanenburg, V. Andrearczyk, R. Schaer, A. P. Apte, A. Ayotte, B. Baheti, S. Bakas, A. Bettinelli, R. Boellaard, L. Boldrini, I. Buvat, G. J. R. Cook, F. Dietsche, N. Dinapoli, H. S. Gabryś, V. Goh, M. Guckenberger, M. Hatt, M. Hosseinzadeh, A. Iyer, J. Lenkowicz, M. A. L. Loutfi, S. Löck, F. Marturano, O. Morin, C. Nioche, F. Orlhac, S. Pati, A. Rahmim, S. M. Rezaeijo, C. G. Rookyard, M. R. Salmanpour, A. Schindele, I. Shiri, E. Spezi, S. Tanadini-Lang, F. Tixier, T. Upadhaya, V. Valentini, J. J. M. van Griethuysen, F. Yousefirizi, H. Zaidi, H. Müller, M. Vallières, and A. Depeursinge. The image biomarker standardization initiative: Standardized convolutional filters for reproducible radiomics and enhanced clinical insights. Radiology, 310(2):e231319, 2024. Winkels and Cohen 2019 M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. M. Weiler, M. Geiger, M. Welling, W. Boomsma, and T. Cohen. 3D steerable CNNs: Learning rotationally equivariant features in volumetric data. In Advances in Neural Information Processing Systems, volume 2018-December, pages 10381–10392. Neural information processing systems foundation, 2018a. Weiler et al. 2018b M. Weiler, F. A. Hamprecht, and M. Storath. Learning Steerable Filters for Rotation Equivariant CNNs. CoRR, abs/1711.0, 2018b. Whybra et al. 2024 P. Whybra, A. Zwanenburg, V. Andrearczyk, R. Schaer, A. P. Apte, A. Ayotte, B. Baheti, S. Bakas, A. Bettinelli, R. Boellaard, L. Boldrini, I. Buvat, G. J. R. Cook, F. Dietsche, N. Dinapoli, H. S. Gabryś, V. Goh, M. Guckenberger, M. Hatt, M. Hosseinzadeh, A. Iyer, J. Lenkowicz, M. A. L. Loutfi, S. Löck, F. Marturano, O. Morin, C. Nioche, F. Orlhac, S. Pati, A. Rahmim, S. M. Rezaeijo, C. G. Rookyard, M. R. Salmanpour, A. Schindele, I. Shiri, E. Spezi, S. Tanadini-Lang, F. Tixier, T. Upadhaya, V. Valentini, J. J. M. van Griethuysen, F. Yousefirizi, H. Zaidi, H. Müller, M. Vallières, and A. Depeursinge. The image biomarker standardization initiative: Standardized convolutional filters for reproducible radiomics and enhanced clinical insights. Radiology, 310(2):e231319, 2024. Winkels and Cohen 2019 M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. M. Weiler, F. A. Hamprecht, and M. Storath. Learning Steerable Filters for Rotation Equivariant CNNs. CoRR, abs/1711.0, 2018b. Whybra et al. 2024 P. Whybra, A. Zwanenburg, V. Andrearczyk, R. Schaer, A. P. Apte, A. Ayotte, B. Baheti, S. Bakas, A. Bettinelli, R. Boellaard, L. Boldrini, I. Buvat, G. J. R. Cook, F. Dietsche, N. Dinapoli, H. S. Gabryś, V. Goh, M. Guckenberger, M. Hatt, M. Hosseinzadeh, A. Iyer, J. Lenkowicz, M. A. L. Loutfi, S. Löck, F. Marturano, O. Morin, C. Nioche, F. Orlhac, S. Pati, A. Rahmim, S. M. Rezaeijo, C. G. Rookyard, M. R. Salmanpour, A. Schindele, I. Shiri, E. Spezi, S. Tanadini-Lang, F. Tixier, T. Upadhaya, V. Valentini, J. J. M. van Griethuysen, F. Yousefirizi, H. Zaidi, H. Müller, M. Vallières, and A. Depeursinge. The image biomarker standardization initiative: Standardized convolutional filters for reproducible radiomics and enhanced clinical insights. Radiology, 310(2):e231319, 2024. Winkels and Cohen 2019 M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. P. Whybra, A. Zwanenburg, V. Andrearczyk, R. Schaer, A. P. Apte, A. Ayotte, B. Baheti, S. Bakas, A. Bettinelli, R. Boellaard, L. Boldrini, I. Buvat, G. J. R. Cook, F. Dietsche, N. Dinapoli, H. S. Gabryś, V. Goh, M. Guckenberger, M. Hatt, M. Hosseinzadeh, A. Iyer, J. Lenkowicz, M. A. L. Loutfi, S. Löck, F. Marturano, O. Morin, C. Nioche, F. Orlhac, S. Pati, A. Rahmim, S. M. Rezaeijo, C. G. Rookyard, M. R. Salmanpour, A. Schindele, I. Shiri, E. Spezi, S. Tanadini-Lang, F. Tixier, T. Upadhaya, V. Valentini, J. J. M. van Griethuysen, F. Yousefirizi, H. Zaidi, H. Müller, M. Vallières, and A. Depeursinge. The image biomarker standardization initiative: Standardized convolutional filters for reproducible radiomics and enhanced clinical insights. Radiology, 310(2):e231319, 2024. Winkels and Cohen 2019 M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020.
- Extraction and Tracking of MRI Tagging Sheets Using a 3D Gabor Filter Bank. In 2006 International Conference of the IEEE Engineering in Medicine and Biology Society, pages 711–714. IEEE, 2006. Szczypiński and Klepaczko 2017 P. M. Szczypiński and A. Klepaczko. MaZda – A Framework for Biomedical Image Texture Analysis and Data Exploration. In Biomedical Texture Analysis, pages 315–347. Elsevier, 2017. Tamura et al. 1978 H. Tamura, S. Mori, and T. Yamawaki. Textural Features Corresponding to Visual Perception. IEEE Transactions on Systems, Man and Cybernetics, 8(6):460–473, 1978. Tustison et al. 2010 N. J. Tustison, B. B. Avants, P. A. Cook, Y. Zheng, A. Egan, P. A. Yushkevich, and J. C. Gee. N4ITK: improved N3 bias correction. IEEE Trans. Med. Imaging, 29(6):1310–1320, 2010. Unser 2012 M. Unser. Image Processing I and II. Ecole polytechnique fédérale de Lausanne (EPFL), 2012. Unser and Van De Ville 2010 M. Unser and D. Van De Ville. Wavelet steerability and the higher-order Riesz transform. IEEE Transactions on Image Processing, 19(3):636–652, 2010. Unser et al. 2011 M. Unser, N. Chenouard, and D. Van De Ville. Steerable Pyramids and Tight Wavelet Frames in L2(ℝd)subscript𝐿2superscriptℝ𝑑L_{2}(\mathbb{R}^{d})italic_L start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( blackboard_R start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT ). IEEE Transactions on Image Processing, 20(10):2705–2721, 2011. Vallières et al. 2015a M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. Data from: A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities, 2015a. Vallières et al. 2015b M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Phys. Med. Biol., 60(14):5471–5496, 2015b. van Griethuysen et al. 2017 J. J. M. van Griethuysen, A. Fedorov, C. Parmar, A. Hosny, N. Aucoin, V. Narayan, R. G. H. Beets-Tan, J.-C. Fillion-Robin, S. Pieper, and H. J. W. L. Aerts. Computational radiomics system to decode the radiographic phenotype. Cancer Res., 77(21):e104–e107, 2017. Weiler et al. 2018a M. Weiler, M. Geiger, M. Welling, W. Boomsma, and T. Cohen. 3D steerable CNNs: Learning rotationally equivariant features in volumetric data. In Advances in Neural Information Processing Systems, volume 2018-December, pages 10381–10392. Neural information processing systems foundation, 2018a. Weiler et al. 2018b M. Weiler, F. A. Hamprecht, and M. Storath. Learning Steerable Filters for Rotation Equivariant CNNs. CoRR, abs/1711.0, 2018b. Whybra et al. 2024 P. Whybra, A. Zwanenburg, V. Andrearczyk, R. Schaer, A. P. Apte, A. Ayotte, B. Baheti, S. Bakas, A. Bettinelli, R. Boellaard, L. Boldrini, I. Buvat, G. J. R. Cook, F. Dietsche, N. Dinapoli, H. S. Gabryś, V. Goh, M. Guckenberger, M. Hatt, M. Hosseinzadeh, A. Iyer, J. Lenkowicz, M. A. L. Loutfi, S. Löck, F. Marturano, O. Morin, C. Nioche, F. Orlhac, S. Pati, A. Rahmim, S. M. Rezaeijo, C. G. Rookyard, M. R. Salmanpour, A. Schindele, I. Shiri, E. Spezi, S. Tanadini-Lang, F. Tixier, T. Upadhaya, V. Valentini, J. J. M. van Griethuysen, F. Yousefirizi, H. Zaidi, H. Müller, M. Vallières, and A. Depeursinge. The image biomarker standardization initiative: Standardized convolutional filters for reproducible radiomics and enhanced clinical insights. Radiology, 310(2):e231319, 2024. Winkels and Cohen 2019 M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. P. M. Szczypiński and A. Klepaczko. MaZda – A Framework for Biomedical Image Texture Analysis and Data Exploration. In Biomedical Texture Analysis, pages 315–347. Elsevier, 2017. Tamura et al. 1978 H. Tamura, S. Mori, and T. Yamawaki. Textural Features Corresponding to Visual Perception. IEEE Transactions on Systems, Man and Cybernetics, 8(6):460–473, 1978. Tustison et al. 2010 N. J. Tustison, B. B. Avants, P. A. Cook, Y. Zheng, A. Egan, P. A. Yushkevich, and J. C. Gee. N4ITK: improved N3 bias correction. IEEE Trans. Med. Imaging, 29(6):1310–1320, 2010. Unser 2012 M. Unser. Image Processing I and II. Ecole polytechnique fédérale de Lausanne (EPFL), 2012. Unser and Van De Ville 2010 M. Unser and D. Van De Ville. Wavelet steerability and the higher-order Riesz transform. IEEE Transactions on Image Processing, 19(3):636–652, 2010. Unser et al. 2011 M. Unser, N. Chenouard, and D. Van De Ville. Steerable Pyramids and Tight Wavelet Frames in L2(ℝd)subscript𝐿2superscriptℝ𝑑L_{2}(\mathbb{R}^{d})italic_L start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( blackboard_R start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT ). IEEE Transactions on Image Processing, 20(10):2705–2721, 2011. Vallières et al. 2015a M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. Data from: A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities, 2015a. Vallières et al. 2015b M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Phys. Med. Biol., 60(14):5471–5496, 2015b. van Griethuysen et al. 2017 J. J. M. van Griethuysen, A. Fedorov, C. Parmar, A. Hosny, N. Aucoin, V. Narayan, R. G. H. Beets-Tan, J.-C. Fillion-Robin, S. Pieper, and H. J. W. L. Aerts. Computational radiomics system to decode the radiographic phenotype. Cancer Res., 77(21):e104–e107, 2017. Weiler et al. 2018a M. Weiler, M. Geiger, M. Welling, W. Boomsma, and T. Cohen. 3D steerable CNNs: Learning rotationally equivariant features in volumetric data. In Advances in Neural Information Processing Systems, volume 2018-December, pages 10381–10392. Neural information processing systems foundation, 2018a. Weiler et al. 2018b M. Weiler, F. A. Hamprecht, and M. Storath. Learning Steerable Filters for Rotation Equivariant CNNs. CoRR, abs/1711.0, 2018b. Whybra et al. 2024 P. Whybra, A. Zwanenburg, V. Andrearczyk, R. Schaer, A. P. Apte, A. Ayotte, B. Baheti, S. Bakas, A. Bettinelli, R. Boellaard, L. Boldrini, I. Buvat, G. J. R. Cook, F. Dietsche, N. Dinapoli, H. S. Gabryś, V. Goh, M. Guckenberger, M. Hatt, M. Hosseinzadeh, A. Iyer, J. Lenkowicz, M. A. L. Loutfi, S. Löck, F. Marturano, O. Morin, C. Nioche, F. Orlhac, S. Pati, A. Rahmim, S. M. Rezaeijo, C. G. Rookyard, M. R. Salmanpour, A. Schindele, I. Shiri, E. Spezi, S. Tanadini-Lang, F. Tixier, T. Upadhaya, V. Valentini, J. J. M. van Griethuysen, F. Yousefirizi, H. Zaidi, H. Müller, M. Vallières, and A. Depeursinge. The image biomarker standardization initiative: Standardized convolutional filters for reproducible radiomics and enhanced clinical insights. Radiology, 310(2):e231319, 2024. Winkels and Cohen 2019 M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. H. Tamura, S. Mori, and T. Yamawaki. Textural Features Corresponding to Visual Perception. IEEE Transactions on Systems, Man and Cybernetics, 8(6):460–473, 1978. Tustison et al. 2010 N. J. Tustison, B. B. Avants, P. A. Cook, Y. Zheng, A. Egan, P. A. Yushkevich, and J. C. Gee. N4ITK: improved N3 bias correction. IEEE Trans. Med. Imaging, 29(6):1310–1320, 2010. Unser 2012 M. Unser. Image Processing I and II. Ecole polytechnique fédérale de Lausanne (EPFL), 2012. Unser and Van De Ville 2010 M. Unser and D. Van De Ville. Wavelet steerability and the higher-order Riesz transform. IEEE Transactions on Image Processing, 19(3):636–652, 2010. Unser et al. 2011 M. Unser, N. Chenouard, and D. Van De Ville. Steerable Pyramids and Tight Wavelet Frames in L2(ℝd)subscript𝐿2superscriptℝ𝑑L_{2}(\mathbb{R}^{d})italic_L start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( blackboard_R start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT ). IEEE Transactions on Image Processing, 20(10):2705–2721, 2011. Vallières et al. 2015a M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. Data from: A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities, 2015a. Vallières et al. 2015b M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Phys. Med. Biol., 60(14):5471–5496, 2015b. van Griethuysen et al. 2017 J. J. M. van Griethuysen, A. Fedorov, C. Parmar, A. Hosny, N. Aucoin, V. Narayan, R. G. H. Beets-Tan, J.-C. Fillion-Robin, S. Pieper, and H. J. W. L. Aerts. Computational radiomics system to decode the radiographic phenotype. Cancer Res., 77(21):e104–e107, 2017. Weiler et al. 2018a M. Weiler, M. Geiger, M. Welling, W. Boomsma, and T. Cohen. 3D steerable CNNs: Learning rotationally equivariant features in volumetric data. In Advances in Neural Information Processing Systems, volume 2018-December, pages 10381–10392. Neural information processing systems foundation, 2018a. Weiler et al. 2018b M. Weiler, F. A. Hamprecht, and M. Storath. Learning Steerable Filters for Rotation Equivariant CNNs. CoRR, abs/1711.0, 2018b. Whybra et al. 2024 P. Whybra, A. Zwanenburg, V. Andrearczyk, R. Schaer, A. P. Apte, A. Ayotte, B. Baheti, S. Bakas, A. Bettinelli, R. Boellaard, L. Boldrini, I. Buvat, G. J. R. Cook, F. Dietsche, N. Dinapoli, H. S. Gabryś, V. Goh, M. Guckenberger, M. Hatt, M. Hosseinzadeh, A. Iyer, J. Lenkowicz, M. A. L. Loutfi, S. Löck, F. Marturano, O. Morin, C. Nioche, F. Orlhac, S. Pati, A. Rahmim, S. M. Rezaeijo, C. G. Rookyard, M. R. Salmanpour, A. Schindele, I. Shiri, E. Spezi, S. Tanadini-Lang, F. Tixier, T. Upadhaya, V. Valentini, J. J. M. van Griethuysen, F. Yousefirizi, H. Zaidi, H. Müller, M. Vallières, and A. Depeursinge. The image biomarker standardization initiative: Standardized convolutional filters for reproducible radiomics and enhanced clinical insights. Radiology, 310(2):e231319, 2024. Winkels and Cohen 2019 M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. N. J. Tustison, B. B. Avants, P. A. Cook, Y. Zheng, A. Egan, P. A. Yushkevich, and J. C. Gee. N4ITK: improved N3 bias correction. IEEE Trans. Med. Imaging, 29(6):1310–1320, 2010. Unser 2012 M. Unser. Image Processing I and II. Ecole polytechnique fédérale de Lausanne (EPFL), 2012. Unser and Van De Ville 2010 M. Unser and D. Van De Ville. Wavelet steerability and the higher-order Riesz transform. IEEE Transactions on Image Processing, 19(3):636–652, 2010. Unser et al. 2011 M. Unser, N. Chenouard, and D. Van De Ville. Steerable Pyramids and Tight Wavelet Frames in L2(ℝd)subscript𝐿2superscriptℝ𝑑L_{2}(\mathbb{R}^{d})italic_L start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( blackboard_R start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT ). IEEE Transactions on Image Processing, 20(10):2705–2721, 2011. Vallières et al. 2015a M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. Data from: A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities, 2015a. Vallières et al. 2015b M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Phys. Med. Biol., 60(14):5471–5496, 2015b. van Griethuysen et al. 2017 J. J. M. van Griethuysen, A. Fedorov, C. Parmar, A. Hosny, N. Aucoin, V. Narayan, R. G. H. Beets-Tan, J.-C. Fillion-Robin, S. Pieper, and H. J. W. L. Aerts. Computational radiomics system to decode the radiographic phenotype. Cancer Res., 77(21):e104–e107, 2017. Weiler et al. 2018a M. Weiler, M. Geiger, M. Welling, W. Boomsma, and T. Cohen. 3D steerable CNNs: Learning rotationally equivariant features in volumetric data. In Advances in Neural Information Processing Systems, volume 2018-December, pages 10381–10392. Neural information processing systems foundation, 2018a. Weiler et al. 2018b M. Weiler, F. A. Hamprecht, and M. Storath. Learning Steerable Filters for Rotation Equivariant CNNs. CoRR, abs/1711.0, 2018b. Whybra et al. 2024 P. Whybra, A. Zwanenburg, V. Andrearczyk, R. Schaer, A. P. Apte, A. Ayotte, B. Baheti, S. Bakas, A. Bettinelli, R. Boellaard, L. Boldrini, I. Buvat, G. J. R. Cook, F. Dietsche, N. Dinapoli, H. S. Gabryś, V. Goh, M. Guckenberger, M. Hatt, M. Hosseinzadeh, A. Iyer, J. Lenkowicz, M. A. L. Loutfi, S. Löck, F. Marturano, O. Morin, C. Nioche, F. Orlhac, S. Pati, A. Rahmim, S. M. Rezaeijo, C. G. Rookyard, M. R. Salmanpour, A. Schindele, I. Shiri, E. Spezi, S. Tanadini-Lang, F. Tixier, T. Upadhaya, V. Valentini, J. J. M. van Griethuysen, F. Yousefirizi, H. Zaidi, H. Müller, M. Vallières, and A. Depeursinge. The image biomarker standardization initiative: Standardized convolutional filters for reproducible radiomics and enhanced clinical insights. Radiology, 310(2):e231319, 2024. Winkels and Cohen 2019 M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. M. Unser. Image Processing I and II. Ecole polytechnique fédérale de Lausanne (EPFL), 2012. Unser and Van De Ville 2010 M. Unser and D. Van De Ville. Wavelet steerability and the higher-order Riesz transform. IEEE Transactions on Image Processing, 19(3):636–652, 2010. Unser et al. 2011 M. Unser, N. Chenouard, and D. Van De Ville. Steerable Pyramids and Tight Wavelet Frames in L2(ℝd)subscript𝐿2superscriptℝ𝑑L_{2}(\mathbb{R}^{d})italic_L start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( blackboard_R start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT ). IEEE Transactions on Image Processing, 20(10):2705–2721, 2011. Vallières et al. 2015a M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. Data from: A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities, 2015a. Vallières et al. 2015b M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Phys. Med. Biol., 60(14):5471–5496, 2015b. van Griethuysen et al. 2017 J. J. M. van Griethuysen, A. Fedorov, C. Parmar, A. Hosny, N. Aucoin, V. Narayan, R. G. H. Beets-Tan, J.-C. Fillion-Robin, S. Pieper, and H. J. W. L. Aerts. Computational radiomics system to decode the radiographic phenotype. Cancer Res., 77(21):e104–e107, 2017. Weiler et al. 2018a M. Weiler, M. Geiger, M. Welling, W. Boomsma, and T. Cohen. 3D steerable CNNs: Learning rotationally equivariant features in volumetric data. In Advances in Neural Information Processing Systems, volume 2018-December, pages 10381–10392. Neural information processing systems foundation, 2018a. Weiler et al. 2018b M. Weiler, F. A. Hamprecht, and M. Storath. Learning Steerable Filters for Rotation Equivariant CNNs. CoRR, abs/1711.0, 2018b. Whybra et al. 2024 P. Whybra, A. Zwanenburg, V. Andrearczyk, R. Schaer, A. P. Apte, A. Ayotte, B. Baheti, S. Bakas, A. Bettinelli, R. Boellaard, L. Boldrini, I. Buvat, G. J. R. Cook, F. Dietsche, N. Dinapoli, H. S. Gabryś, V. Goh, M. Guckenberger, M. Hatt, M. Hosseinzadeh, A. Iyer, J. Lenkowicz, M. A. L. Loutfi, S. Löck, F. Marturano, O. Morin, C. Nioche, F. Orlhac, S. Pati, A. Rahmim, S. M. Rezaeijo, C. G. Rookyard, M. R. Salmanpour, A. Schindele, I. Shiri, E. Spezi, S. Tanadini-Lang, F. Tixier, T. Upadhaya, V. Valentini, J. J. M. van Griethuysen, F. Yousefirizi, H. Zaidi, H. Müller, M. Vallières, and A. Depeursinge. The image biomarker standardization initiative: Standardized convolutional filters for reproducible radiomics and enhanced clinical insights. Radiology, 310(2):e231319, 2024. Winkels and Cohen 2019 M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. M. Unser and D. Van De Ville. Wavelet steerability and the higher-order Riesz transform. IEEE Transactions on Image Processing, 19(3):636–652, 2010. Unser et al. 2011 M. Unser, N. Chenouard, and D. Van De Ville. Steerable Pyramids and Tight Wavelet Frames in L2(ℝd)subscript𝐿2superscriptℝ𝑑L_{2}(\mathbb{R}^{d})italic_L start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( blackboard_R start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT ). IEEE Transactions on Image Processing, 20(10):2705–2721, 2011. Vallières et al. 2015a M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. Data from: A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities, 2015a. Vallières et al. 2015b M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Phys. Med. Biol., 60(14):5471–5496, 2015b. van Griethuysen et al. 2017 J. J. M. van Griethuysen, A. Fedorov, C. Parmar, A. Hosny, N. Aucoin, V. Narayan, R. G. H. Beets-Tan, J.-C. Fillion-Robin, S. Pieper, and H. J. W. L. Aerts. Computational radiomics system to decode the radiographic phenotype. Cancer Res., 77(21):e104–e107, 2017. Weiler et al. 2018a M. Weiler, M. Geiger, M. Welling, W. Boomsma, and T. Cohen. 3D steerable CNNs: Learning rotationally equivariant features in volumetric data. In Advances in Neural Information Processing Systems, volume 2018-December, pages 10381–10392. Neural information processing systems foundation, 2018a. Weiler et al. 2018b M. Weiler, F. A. Hamprecht, and M. Storath. Learning Steerable Filters for Rotation Equivariant CNNs. CoRR, abs/1711.0, 2018b. Whybra et al. 2024 P. Whybra, A. Zwanenburg, V. Andrearczyk, R. Schaer, A. P. Apte, A. Ayotte, B. Baheti, S. Bakas, A. Bettinelli, R. Boellaard, L. Boldrini, I. Buvat, G. J. R. Cook, F. Dietsche, N. Dinapoli, H. S. Gabryś, V. Goh, M. Guckenberger, M. Hatt, M. Hosseinzadeh, A. Iyer, J. Lenkowicz, M. A. L. Loutfi, S. Löck, F. Marturano, O. Morin, C. Nioche, F. Orlhac, S. Pati, A. Rahmim, S. M. Rezaeijo, C. G. Rookyard, M. R. Salmanpour, A. Schindele, I. Shiri, E. Spezi, S. Tanadini-Lang, F. Tixier, T. Upadhaya, V. Valentini, J. J. M. van Griethuysen, F. Yousefirizi, H. Zaidi, H. Müller, M. Vallières, and A. Depeursinge. The image biomarker standardization initiative: Standardized convolutional filters for reproducible radiomics and enhanced clinical insights. Radiology, 310(2):e231319, 2024. Winkels and Cohen 2019 M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. M. Unser, N. Chenouard, and D. Van De Ville. Steerable Pyramids and Tight Wavelet Frames in L2(ℝd)subscript𝐿2superscriptℝ𝑑L_{2}(\mathbb{R}^{d})italic_L start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( blackboard_R start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT ). IEEE Transactions on Image Processing, 20(10):2705–2721, 2011. Vallières et al. 2015a M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. Data from: A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities, 2015a. Vallières et al. 2015b M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Phys. Med. Biol., 60(14):5471–5496, 2015b. van Griethuysen et al. 2017 J. J. M. van Griethuysen, A. Fedorov, C. Parmar, A. Hosny, N. Aucoin, V. Narayan, R. G. H. Beets-Tan, J.-C. Fillion-Robin, S. Pieper, and H. J. W. L. Aerts. Computational radiomics system to decode the radiographic phenotype. Cancer Res., 77(21):e104–e107, 2017. Weiler et al. 2018a M. Weiler, M. Geiger, M. Welling, W. Boomsma, and T. Cohen. 3D steerable CNNs: Learning rotationally equivariant features in volumetric data. In Advances in Neural Information Processing Systems, volume 2018-December, pages 10381–10392. Neural information processing systems foundation, 2018a. Weiler et al. 2018b M. Weiler, F. A. Hamprecht, and M. Storath. Learning Steerable Filters for Rotation Equivariant CNNs. CoRR, abs/1711.0, 2018b. Whybra et al. 2024 P. Whybra, A. Zwanenburg, V. Andrearczyk, R. Schaer, A. P. Apte, A. Ayotte, B. Baheti, S. Bakas, A. Bettinelli, R. Boellaard, L. Boldrini, I. Buvat, G. J. R. Cook, F. Dietsche, N. Dinapoli, H. S. Gabryś, V. Goh, M. Guckenberger, M. Hatt, M. Hosseinzadeh, A. Iyer, J. Lenkowicz, M. A. L. Loutfi, S. Löck, F. Marturano, O. Morin, C. Nioche, F. Orlhac, S. Pati, A. Rahmim, S. M. Rezaeijo, C. G. Rookyard, M. R. Salmanpour, A. Schindele, I. Shiri, E. Spezi, S. Tanadini-Lang, F. Tixier, T. Upadhaya, V. Valentini, J. J. M. van Griethuysen, F. Yousefirizi, H. Zaidi, H. Müller, M. Vallières, and A. Depeursinge. The image biomarker standardization initiative: Standardized convolutional filters for reproducible radiomics and enhanced clinical insights. Radiology, 310(2):e231319, 2024. Winkels and Cohen 2019 M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. Data from: A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities, 2015a. Vallières et al. 2015b M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Phys. Med. Biol., 60(14):5471–5496, 2015b. van Griethuysen et al. 2017 J. J. M. van Griethuysen, A. Fedorov, C. Parmar, A. Hosny, N. Aucoin, V. Narayan, R. G. H. Beets-Tan, J.-C. Fillion-Robin, S. Pieper, and H. J. W. L. Aerts. Computational radiomics system to decode the radiographic phenotype. Cancer Res., 77(21):e104–e107, 2017. Weiler et al. 2018a M. Weiler, M. Geiger, M. Welling, W. Boomsma, and T. Cohen. 3D steerable CNNs: Learning rotationally equivariant features in volumetric data. In Advances in Neural Information Processing Systems, volume 2018-December, pages 10381–10392. Neural information processing systems foundation, 2018a. Weiler et al. 2018b M. Weiler, F. A. Hamprecht, and M. Storath. Learning Steerable Filters for Rotation Equivariant CNNs. CoRR, abs/1711.0, 2018b. Whybra et al. 2024 P. Whybra, A. Zwanenburg, V. Andrearczyk, R. Schaer, A. P. Apte, A. Ayotte, B. Baheti, S. Bakas, A. Bettinelli, R. Boellaard, L. Boldrini, I. Buvat, G. J. R. Cook, F. Dietsche, N. Dinapoli, H. S. Gabryś, V. Goh, M. Guckenberger, M. Hatt, M. Hosseinzadeh, A. Iyer, J. Lenkowicz, M. A. L. Loutfi, S. Löck, F. Marturano, O. Morin, C. Nioche, F. Orlhac, S. Pati, A. Rahmim, S. M. Rezaeijo, C. G. Rookyard, M. R. Salmanpour, A. Schindele, I. Shiri, E. Spezi, S. Tanadini-Lang, F. Tixier, T. Upadhaya, V. Valentini, J. J. M. van Griethuysen, F. Yousefirizi, H. Zaidi, H. Müller, M. Vallières, and A. Depeursinge. The image biomarker standardization initiative: Standardized convolutional filters for reproducible radiomics and enhanced clinical insights. Radiology, 310(2):e231319, 2024. Winkels and Cohen 2019 M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Phys. Med. Biol., 60(14):5471–5496, 2015b. van Griethuysen et al. 2017 J. J. M. van Griethuysen, A. Fedorov, C. Parmar, A. Hosny, N. Aucoin, V. Narayan, R. G. H. Beets-Tan, J.-C. Fillion-Robin, S. Pieper, and H. J. W. L. Aerts. Computational radiomics system to decode the radiographic phenotype. Cancer Res., 77(21):e104–e107, 2017. Weiler et al. 2018a M. Weiler, M. Geiger, M. Welling, W. Boomsma, and T. Cohen. 3D steerable CNNs: Learning rotationally equivariant features in volumetric data. In Advances in Neural Information Processing Systems, volume 2018-December, pages 10381–10392. Neural information processing systems foundation, 2018a. Weiler et al. 2018b M. Weiler, F. A. Hamprecht, and M. Storath. Learning Steerable Filters for Rotation Equivariant CNNs. CoRR, abs/1711.0, 2018b. Whybra et al. 2024 P. Whybra, A. Zwanenburg, V. Andrearczyk, R. Schaer, A. P. Apte, A. Ayotte, B. Baheti, S. Bakas, A. Bettinelli, R. Boellaard, L. Boldrini, I. Buvat, G. J. R. Cook, F. Dietsche, N. Dinapoli, H. S. Gabryś, V. Goh, M. Guckenberger, M. Hatt, M. Hosseinzadeh, A. Iyer, J. Lenkowicz, M. A. L. Loutfi, S. Löck, F. Marturano, O. Morin, C. Nioche, F. Orlhac, S. Pati, A. Rahmim, S. M. Rezaeijo, C. G. Rookyard, M. R. Salmanpour, A. Schindele, I. Shiri, E. Spezi, S. Tanadini-Lang, F. Tixier, T. Upadhaya, V. Valentini, J. J. M. van Griethuysen, F. Yousefirizi, H. Zaidi, H. Müller, M. Vallières, and A. Depeursinge. The image biomarker standardization initiative: Standardized convolutional filters for reproducible radiomics and enhanced clinical insights. Radiology, 310(2):e231319, 2024. Winkels and Cohen 2019 M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. J. J. M. van Griethuysen, A. Fedorov, C. Parmar, A. Hosny, N. Aucoin, V. Narayan, R. G. H. Beets-Tan, J.-C. Fillion-Robin, S. Pieper, and H. J. W. L. Aerts. Computational radiomics system to decode the radiographic phenotype. Cancer Res., 77(21):e104–e107, 2017. Weiler et al. 2018a M. Weiler, M. Geiger, M. Welling, W. Boomsma, and T. Cohen. 3D steerable CNNs: Learning rotationally equivariant features in volumetric data. In Advances in Neural Information Processing Systems, volume 2018-December, pages 10381–10392. Neural information processing systems foundation, 2018a. Weiler et al. 2018b M. Weiler, F. A. Hamprecht, and M. Storath. Learning Steerable Filters for Rotation Equivariant CNNs. CoRR, abs/1711.0, 2018b. Whybra et al. 2024 P. Whybra, A. Zwanenburg, V. Andrearczyk, R. Schaer, A. P. Apte, A. Ayotte, B. Baheti, S. Bakas, A. Bettinelli, R. Boellaard, L. Boldrini, I. Buvat, G. J. R. Cook, F. Dietsche, N. Dinapoli, H. S. Gabryś, V. Goh, M. Guckenberger, M. Hatt, M. Hosseinzadeh, A. Iyer, J. Lenkowicz, M. A. L. Loutfi, S. Löck, F. Marturano, O. Morin, C. Nioche, F. Orlhac, S. Pati, A. Rahmim, S. M. Rezaeijo, C. G. Rookyard, M. R. Salmanpour, A. Schindele, I. Shiri, E. Spezi, S. Tanadini-Lang, F. Tixier, T. Upadhaya, V. Valentini, J. J. M. van Griethuysen, F. Yousefirizi, H. Zaidi, H. Müller, M. Vallières, and A. Depeursinge. The image biomarker standardization initiative: Standardized convolutional filters for reproducible radiomics and enhanced clinical insights. Radiology, 310(2):e231319, 2024. Winkels and Cohen 2019 M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. M. Weiler, M. Geiger, M. Welling, W. Boomsma, and T. Cohen. 3D steerable CNNs: Learning rotationally equivariant features in volumetric data. In Advances in Neural Information Processing Systems, volume 2018-December, pages 10381–10392. Neural information processing systems foundation, 2018a. Weiler et al. 2018b M. Weiler, F. A. Hamprecht, and M. Storath. Learning Steerable Filters for Rotation Equivariant CNNs. CoRR, abs/1711.0, 2018b. Whybra et al. 2024 P. Whybra, A. Zwanenburg, V. Andrearczyk, R. Schaer, A. P. Apte, A. Ayotte, B. Baheti, S. Bakas, A. Bettinelli, R. Boellaard, L. Boldrini, I. Buvat, G. J. R. Cook, F. Dietsche, N. Dinapoli, H. S. Gabryś, V. Goh, M. Guckenberger, M. Hatt, M. Hosseinzadeh, A. Iyer, J. Lenkowicz, M. A. L. Loutfi, S. Löck, F. Marturano, O. Morin, C. Nioche, F. Orlhac, S. Pati, A. Rahmim, S. M. Rezaeijo, C. G. Rookyard, M. R. Salmanpour, A. Schindele, I. Shiri, E. Spezi, S. Tanadini-Lang, F. Tixier, T. Upadhaya, V. Valentini, J. J. M. van Griethuysen, F. Yousefirizi, H. Zaidi, H. Müller, M. Vallières, and A. Depeursinge. The image biomarker standardization initiative: Standardized convolutional filters for reproducible radiomics and enhanced clinical insights. Radiology, 310(2):e231319, 2024. Winkels and Cohen 2019 M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. M. Weiler, F. A. Hamprecht, and M. Storath. Learning Steerable Filters for Rotation Equivariant CNNs. CoRR, abs/1711.0, 2018b. Whybra et al. 2024 P. Whybra, A. Zwanenburg, V. Andrearczyk, R. Schaer, A. P. Apte, A. Ayotte, B. Baheti, S. Bakas, A. Bettinelli, R. Boellaard, L. Boldrini, I. Buvat, G. J. R. Cook, F. Dietsche, N. Dinapoli, H. S. Gabryś, V. Goh, M. Guckenberger, M. Hatt, M. Hosseinzadeh, A. Iyer, J. Lenkowicz, M. A. L. Loutfi, S. Löck, F. Marturano, O. Morin, C. Nioche, F. Orlhac, S. Pati, A. Rahmim, S. M. Rezaeijo, C. G. Rookyard, M. R. Salmanpour, A. Schindele, I. Shiri, E. Spezi, S. Tanadini-Lang, F. Tixier, T. Upadhaya, V. Valentini, J. J. M. van Griethuysen, F. Yousefirizi, H. Zaidi, H. Müller, M. Vallières, and A. Depeursinge. The image biomarker standardization initiative: Standardized convolutional filters for reproducible radiomics and enhanced clinical insights. Radiology, 310(2):e231319, 2024. Winkels and Cohen 2019 M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. P. Whybra, A. Zwanenburg, V. Andrearczyk, R. Schaer, A. P. Apte, A. Ayotte, B. Baheti, S. Bakas, A. Bettinelli, R. Boellaard, L. Boldrini, I. Buvat, G. J. R. Cook, F. Dietsche, N. Dinapoli, H. S. Gabryś, V. Goh, M. Guckenberger, M. Hatt, M. Hosseinzadeh, A. Iyer, J. Lenkowicz, M. A. L. Loutfi, S. Löck, F. Marturano, O. Morin, C. Nioche, F. Orlhac, S. Pati, A. Rahmim, S. M. Rezaeijo, C. G. Rookyard, M. R. Salmanpour, A. Schindele, I. Shiri, E. Spezi, S. Tanadini-Lang, F. Tixier, T. Upadhaya, V. Valentini, J. J. M. van Griethuysen, F. Yousefirizi, H. Zaidi, H. Müller, M. Vallières, and A. Depeursinge. The image biomarker standardization initiative: Standardized convolutional filters for reproducible radiomics and enhanced clinical insights. Radiology, 310(2):e231319, 2024. Winkels and Cohen 2019 M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020.
- P. M. Szczypiński and A. Klepaczko. MaZda – A Framework for Biomedical Image Texture Analysis and Data Exploration. In Biomedical Texture Analysis, pages 315–347. Elsevier, 2017. Tamura et al. 1978 H. Tamura, S. Mori, and T. Yamawaki. Textural Features Corresponding to Visual Perception. IEEE Transactions on Systems, Man and Cybernetics, 8(6):460–473, 1978. Tustison et al. 2010 N. J. Tustison, B. B. Avants, P. A. Cook, Y. Zheng, A. Egan, P. A. Yushkevich, and J. C. Gee. N4ITK: improved N3 bias correction. IEEE Trans. Med. Imaging, 29(6):1310–1320, 2010. Unser 2012 M. Unser. Image Processing I and II. Ecole polytechnique fédérale de Lausanne (EPFL), 2012. Unser and Van De Ville 2010 M. Unser and D. Van De Ville. Wavelet steerability and the higher-order Riesz transform. IEEE Transactions on Image Processing, 19(3):636–652, 2010. Unser et al. 2011 M. Unser, N. Chenouard, and D. Van De Ville. Steerable Pyramids and Tight Wavelet Frames in L2(ℝd)subscript𝐿2superscriptℝ𝑑L_{2}(\mathbb{R}^{d})italic_L start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( blackboard_R start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT ). IEEE Transactions on Image Processing, 20(10):2705–2721, 2011. Vallières et al. 2015a M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. Data from: A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities, 2015a. Vallières et al. 2015b M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Phys. Med. Biol., 60(14):5471–5496, 2015b. van Griethuysen et al. 2017 J. J. M. van Griethuysen, A. Fedorov, C. Parmar, A. Hosny, N. Aucoin, V. Narayan, R. G. H. Beets-Tan, J.-C. Fillion-Robin, S. Pieper, and H. J. W. L. Aerts. Computational radiomics system to decode the radiographic phenotype. Cancer Res., 77(21):e104–e107, 2017. Weiler et al. 2018a M. Weiler, M. Geiger, M. Welling, W. Boomsma, and T. Cohen. 3D steerable CNNs: Learning rotationally equivariant features in volumetric data. In Advances in Neural Information Processing Systems, volume 2018-December, pages 10381–10392. Neural information processing systems foundation, 2018a. Weiler et al. 2018b M. Weiler, F. A. Hamprecht, and M. Storath. Learning Steerable Filters for Rotation Equivariant CNNs. CoRR, abs/1711.0, 2018b. Whybra et al. 2024 P. Whybra, A. Zwanenburg, V. Andrearczyk, R. Schaer, A. P. Apte, A. Ayotte, B. Baheti, S. Bakas, A. Bettinelli, R. Boellaard, L. Boldrini, I. Buvat, G. J. R. Cook, F. Dietsche, N. Dinapoli, H. S. Gabryś, V. Goh, M. Guckenberger, M. Hatt, M. Hosseinzadeh, A. Iyer, J. Lenkowicz, M. A. L. Loutfi, S. Löck, F. Marturano, O. Morin, C. Nioche, F. Orlhac, S. Pati, A. Rahmim, S. M. Rezaeijo, C. G. Rookyard, M. R. Salmanpour, A. Schindele, I. Shiri, E. Spezi, S. Tanadini-Lang, F. Tixier, T. Upadhaya, V. Valentini, J. J. M. van Griethuysen, F. Yousefirizi, H. Zaidi, H. Müller, M. Vallières, and A. Depeursinge. The image biomarker standardization initiative: Standardized convolutional filters for reproducible radiomics and enhanced clinical insights. Radiology, 310(2):e231319, 2024. Winkels and Cohen 2019 M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. H. Tamura, S. Mori, and T. Yamawaki. Textural Features Corresponding to Visual Perception. IEEE Transactions on Systems, Man and Cybernetics, 8(6):460–473, 1978. Tustison et al. 2010 N. J. Tustison, B. B. Avants, P. A. Cook, Y. Zheng, A. Egan, P. A. Yushkevich, and J. C. Gee. N4ITK: improved N3 bias correction. IEEE Trans. Med. Imaging, 29(6):1310–1320, 2010. Unser 2012 M. Unser. Image Processing I and II. Ecole polytechnique fédérale de Lausanne (EPFL), 2012. Unser and Van De Ville 2010 M. Unser and D. Van De Ville. Wavelet steerability and the higher-order Riesz transform. IEEE Transactions on Image Processing, 19(3):636–652, 2010. Unser et al. 2011 M. Unser, N. Chenouard, and D. Van De Ville. Steerable Pyramids and Tight Wavelet Frames in L2(ℝd)subscript𝐿2superscriptℝ𝑑L_{2}(\mathbb{R}^{d})italic_L start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( blackboard_R start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT ). IEEE Transactions on Image Processing, 20(10):2705–2721, 2011. Vallières et al. 2015a M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. Data from: A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities, 2015a. Vallières et al. 2015b M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Phys. Med. Biol., 60(14):5471–5496, 2015b. van Griethuysen et al. 2017 J. J. M. van Griethuysen, A. Fedorov, C. Parmar, A. Hosny, N. Aucoin, V. Narayan, R. G. H. Beets-Tan, J.-C. Fillion-Robin, S. Pieper, and H. J. W. L. Aerts. Computational radiomics system to decode the radiographic phenotype. Cancer Res., 77(21):e104–e107, 2017. Weiler et al. 2018a M. Weiler, M. Geiger, M. Welling, W. Boomsma, and T. Cohen. 3D steerable CNNs: Learning rotationally equivariant features in volumetric data. In Advances in Neural Information Processing Systems, volume 2018-December, pages 10381–10392. Neural information processing systems foundation, 2018a. Weiler et al. 2018b M. Weiler, F. A. Hamprecht, and M. Storath. Learning Steerable Filters for Rotation Equivariant CNNs. CoRR, abs/1711.0, 2018b. Whybra et al. 2024 P. Whybra, A. Zwanenburg, V. Andrearczyk, R. Schaer, A. P. Apte, A. Ayotte, B. Baheti, S. Bakas, A. Bettinelli, R. Boellaard, L. Boldrini, I. Buvat, G. J. R. Cook, F. Dietsche, N. Dinapoli, H. S. Gabryś, V. Goh, M. Guckenberger, M. Hatt, M. Hosseinzadeh, A. Iyer, J. Lenkowicz, M. A. L. Loutfi, S. Löck, F. Marturano, O. Morin, C. Nioche, F. Orlhac, S. Pati, A. Rahmim, S. M. Rezaeijo, C. G. Rookyard, M. R. Salmanpour, A. Schindele, I. Shiri, E. Spezi, S. Tanadini-Lang, F. Tixier, T. Upadhaya, V. Valentini, J. J. M. van Griethuysen, F. Yousefirizi, H. Zaidi, H. Müller, M. Vallières, and A. Depeursinge. The image biomarker standardization initiative: Standardized convolutional filters for reproducible radiomics and enhanced clinical insights. Radiology, 310(2):e231319, 2024. Winkels and Cohen 2019 M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. N. J. Tustison, B. B. Avants, P. A. Cook, Y. Zheng, A. Egan, P. A. Yushkevich, and J. C. Gee. N4ITK: improved N3 bias correction. IEEE Trans. Med. Imaging, 29(6):1310–1320, 2010. Unser 2012 M. Unser. Image Processing I and II. Ecole polytechnique fédérale de Lausanne (EPFL), 2012. Unser and Van De Ville 2010 M. Unser and D. Van De Ville. Wavelet steerability and the higher-order Riesz transform. IEEE Transactions on Image Processing, 19(3):636–652, 2010. Unser et al. 2011 M. Unser, N. Chenouard, and D. Van De Ville. Steerable Pyramids and Tight Wavelet Frames in L2(ℝd)subscript𝐿2superscriptℝ𝑑L_{2}(\mathbb{R}^{d})italic_L start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( blackboard_R start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT ). IEEE Transactions on Image Processing, 20(10):2705–2721, 2011. Vallières et al. 2015a M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. Data from: A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities, 2015a. Vallières et al. 2015b M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Phys. Med. Biol., 60(14):5471–5496, 2015b. van Griethuysen et al. 2017 J. J. M. van Griethuysen, A. Fedorov, C. Parmar, A. Hosny, N. Aucoin, V. Narayan, R. G. H. Beets-Tan, J.-C. Fillion-Robin, S. Pieper, and H. J. W. L. Aerts. Computational radiomics system to decode the radiographic phenotype. Cancer Res., 77(21):e104–e107, 2017. Weiler et al. 2018a M. Weiler, M. Geiger, M. Welling, W. Boomsma, and T. Cohen. 3D steerable CNNs: Learning rotationally equivariant features in volumetric data. In Advances in Neural Information Processing Systems, volume 2018-December, pages 10381–10392. Neural information processing systems foundation, 2018a. Weiler et al. 2018b M. Weiler, F. A. Hamprecht, and M. Storath. Learning Steerable Filters for Rotation Equivariant CNNs. CoRR, abs/1711.0, 2018b. Whybra et al. 2024 P. Whybra, A. Zwanenburg, V. Andrearczyk, R. Schaer, A. P. Apte, A. Ayotte, B. Baheti, S. Bakas, A. Bettinelli, R. Boellaard, L. Boldrini, I. Buvat, G. J. R. Cook, F. Dietsche, N. Dinapoli, H. S. Gabryś, V. Goh, M. Guckenberger, M. Hatt, M. Hosseinzadeh, A. Iyer, J. Lenkowicz, M. A. L. Loutfi, S. Löck, F. Marturano, O. Morin, C. Nioche, F. Orlhac, S. Pati, A. Rahmim, S. M. Rezaeijo, C. G. Rookyard, M. R. Salmanpour, A. Schindele, I. Shiri, E. Spezi, S. Tanadini-Lang, F. Tixier, T. Upadhaya, V. Valentini, J. J. M. van Griethuysen, F. Yousefirizi, H. Zaidi, H. Müller, M. Vallières, and A. Depeursinge. The image biomarker standardization initiative: Standardized convolutional filters for reproducible radiomics and enhanced clinical insights. Radiology, 310(2):e231319, 2024. Winkels and Cohen 2019 M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. M. Unser. Image Processing I and II. Ecole polytechnique fédérale de Lausanne (EPFL), 2012. Unser and Van De Ville 2010 M. Unser and D. Van De Ville. Wavelet steerability and the higher-order Riesz transform. IEEE Transactions on Image Processing, 19(3):636–652, 2010. Unser et al. 2011 M. Unser, N. Chenouard, and D. Van De Ville. Steerable Pyramids and Tight Wavelet Frames in L2(ℝd)subscript𝐿2superscriptℝ𝑑L_{2}(\mathbb{R}^{d})italic_L start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( blackboard_R start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT ). IEEE Transactions on Image Processing, 20(10):2705–2721, 2011. Vallières et al. 2015a M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. Data from: A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities, 2015a. Vallières et al. 2015b M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Phys. Med. Biol., 60(14):5471–5496, 2015b. van Griethuysen et al. 2017 J. J. M. van Griethuysen, A. Fedorov, C. Parmar, A. Hosny, N. Aucoin, V. Narayan, R. G. H. Beets-Tan, J.-C. Fillion-Robin, S. Pieper, and H. J. W. L. Aerts. Computational radiomics system to decode the radiographic phenotype. Cancer Res., 77(21):e104–e107, 2017. Weiler et al. 2018a M. Weiler, M. Geiger, M. Welling, W. Boomsma, and T. Cohen. 3D steerable CNNs: Learning rotationally equivariant features in volumetric data. In Advances in Neural Information Processing Systems, volume 2018-December, pages 10381–10392. Neural information processing systems foundation, 2018a. Weiler et al. 2018b M. Weiler, F. A. Hamprecht, and M. Storath. Learning Steerable Filters for Rotation Equivariant CNNs. CoRR, abs/1711.0, 2018b. Whybra et al. 2024 P. Whybra, A. Zwanenburg, V. Andrearczyk, R. Schaer, A. P. Apte, A. Ayotte, B. Baheti, S. Bakas, A. Bettinelli, R. Boellaard, L. Boldrini, I. Buvat, G. J. R. Cook, F. Dietsche, N. Dinapoli, H. S. Gabryś, V. Goh, M. Guckenberger, M. Hatt, M. Hosseinzadeh, A. Iyer, J. Lenkowicz, M. A. L. Loutfi, S. Löck, F. Marturano, O. Morin, C. Nioche, F. Orlhac, S. Pati, A. Rahmim, S. M. Rezaeijo, C. G. Rookyard, M. R. Salmanpour, A. Schindele, I. Shiri, E. Spezi, S. Tanadini-Lang, F. Tixier, T. Upadhaya, V. Valentini, J. J. M. van Griethuysen, F. Yousefirizi, H. Zaidi, H. Müller, M. Vallières, and A. Depeursinge. The image biomarker standardization initiative: Standardized convolutional filters for reproducible radiomics and enhanced clinical insights. Radiology, 310(2):e231319, 2024. Winkels and Cohen 2019 M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. M. Unser and D. Van De Ville. Wavelet steerability and the higher-order Riesz transform. IEEE Transactions on Image Processing, 19(3):636–652, 2010. Unser et al. 2011 M. Unser, N. Chenouard, and D. Van De Ville. Steerable Pyramids and Tight Wavelet Frames in L2(ℝd)subscript𝐿2superscriptℝ𝑑L_{2}(\mathbb{R}^{d})italic_L start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( blackboard_R start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT ). IEEE Transactions on Image Processing, 20(10):2705–2721, 2011. Vallières et al. 2015a M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. Data from: A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities, 2015a. Vallières et al. 2015b M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Phys. Med. Biol., 60(14):5471–5496, 2015b. van Griethuysen et al. 2017 J. J. M. van Griethuysen, A. Fedorov, C. Parmar, A. Hosny, N. Aucoin, V. Narayan, R. G. H. Beets-Tan, J.-C. Fillion-Robin, S. Pieper, and H. J. W. L. Aerts. Computational radiomics system to decode the radiographic phenotype. Cancer Res., 77(21):e104–e107, 2017. Weiler et al. 2018a M. Weiler, M. Geiger, M. Welling, W. Boomsma, and T. Cohen. 3D steerable CNNs: Learning rotationally equivariant features in volumetric data. In Advances in Neural Information Processing Systems, volume 2018-December, pages 10381–10392. Neural information processing systems foundation, 2018a. Weiler et al. 2018b M. Weiler, F. A. Hamprecht, and M. Storath. Learning Steerable Filters for Rotation Equivariant CNNs. CoRR, abs/1711.0, 2018b. Whybra et al. 2024 P. Whybra, A. Zwanenburg, V. Andrearczyk, R. Schaer, A. P. Apte, A. Ayotte, B. Baheti, S. Bakas, A. Bettinelli, R. Boellaard, L. Boldrini, I. Buvat, G. J. R. Cook, F. Dietsche, N. Dinapoli, H. S. Gabryś, V. Goh, M. Guckenberger, M. Hatt, M. Hosseinzadeh, A. Iyer, J. Lenkowicz, M. A. L. Loutfi, S. Löck, F. Marturano, O. Morin, C. Nioche, F. Orlhac, S. Pati, A. Rahmim, S. M. Rezaeijo, C. G. Rookyard, M. R. Salmanpour, A. Schindele, I. Shiri, E. Spezi, S. Tanadini-Lang, F. Tixier, T. Upadhaya, V. Valentini, J. J. M. van Griethuysen, F. Yousefirizi, H. Zaidi, H. Müller, M. Vallières, and A. Depeursinge. The image biomarker standardization initiative: Standardized convolutional filters for reproducible radiomics and enhanced clinical insights. Radiology, 310(2):e231319, 2024. Winkels and Cohen 2019 M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. M. Unser, N. Chenouard, and D. Van De Ville. Steerable Pyramids and Tight Wavelet Frames in L2(ℝd)subscript𝐿2superscriptℝ𝑑L_{2}(\mathbb{R}^{d})italic_L start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( blackboard_R start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT ). IEEE Transactions on Image Processing, 20(10):2705–2721, 2011. Vallières et al. 2015a M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. Data from: A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities, 2015a. Vallières et al. 2015b M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Phys. Med. Biol., 60(14):5471–5496, 2015b. van Griethuysen et al. 2017 J. J. M. van Griethuysen, A. Fedorov, C. Parmar, A. Hosny, N. Aucoin, V. Narayan, R. G. H. Beets-Tan, J.-C. Fillion-Robin, S. Pieper, and H. J. W. L. Aerts. Computational radiomics system to decode the radiographic phenotype. Cancer Res., 77(21):e104–e107, 2017. Weiler et al. 2018a M. Weiler, M. Geiger, M. Welling, W. Boomsma, and T. Cohen. 3D steerable CNNs: Learning rotationally equivariant features in volumetric data. In Advances in Neural Information Processing Systems, volume 2018-December, pages 10381–10392. Neural information processing systems foundation, 2018a. Weiler et al. 2018b M. Weiler, F. A. Hamprecht, and M. Storath. Learning Steerable Filters for Rotation Equivariant CNNs. CoRR, abs/1711.0, 2018b. Whybra et al. 2024 P. Whybra, A. Zwanenburg, V. Andrearczyk, R. Schaer, A. P. Apte, A. Ayotte, B. Baheti, S. Bakas, A. Bettinelli, R. Boellaard, L. Boldrini, I. Buvat, G. J. R. Cook, F. Dietsche, N. Dinapoli, H. S. Gabryś, V. Goh, M. Guckenberger, M. Hatt, M. Hosseinzadeh, A. Iyer, J. Lenkowicz, M. A. L. Loutfi, S. Löck, F. Marturano, O. Morin, C. Nioche, F. Orlhac, S. Pati, A. Rahmim, S. M. Rezaeijo, C. G. Rookyard, M. R. Salmanpour, A. Schindele, I. Shiri, E. Spezi, S. Tanadini-Lang, F. Tixier, T. Upadhaya, V. Valentini, J. J. M. van Griethuysen, F. Yousefirizi, H. Zaidi, H. Müller, M. Vallières, and A. Depeursinge. The image biomarker standardization initiative: Standardized convolutional filters for reproducible radiomics and enhanced clinical insights. Radiology, 310(2):e231319, 2024. Winkels and Cohen 2019 M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. Data from: A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities, 2015a. Vallières et al. 2015b M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Phys. Med. Biol., 60(14):5471–5496, 2015b. van Griethuysen et al. 2017 J. J. M. van Griethuysen, A. Fedorov, C. Parmar, A. Hosny, N. Aucoin, V. Narayan, R. G. H. Beets-Tan, J.-C. Fillion-Robin, S. Pieper, and H. J. W. L. Aerts. Computational radiomics system to decode the radiographic phenotype. Cancer Res., 77(21):e104–e107, 2017. Weiler et al. 2018a M. Weiler, M. Geiger, M. Welling, W. Boomsma, and T. Cohen. 3D steerable CNNs: Learning rotationally equivariant features in volumetric data. In Advances in Neural Information Processing Systems, volume 2018-December, pages 10381–10392. Neural information processing systems foundation, 2018a. Weiler et al. 2018b M. Weiler, F. A. Hamprecht, and M. Storath. Learning Steerable Filters for Rotation Equivariant CNNs. CoRR, abs/1711.0, 2018b. Whybra et al. 2024 P. Whybra, A. Zwanenburg, V. Andrearczyk, R. Schaer, A. P. Apte, A. Ayotte, B. Baheti, S. Bakas, A. Bettinelli, R. Boellaard, L. Boldrini, I. Buvat, G. J. R. Cook, F. Dietsche, N. Dinapoli, H. S. Gabryś, V. Goh, M. Guckenberger, M. Hatt, M. Hosseinzadeh, A. Iyer, J. Lenkowicz, M. A. L. Loutfi, S. Löck, F. Marturano, O. Morin, C. Nioche, F. Orlhac, S. Pati, A. Rahmim, S. M. Rezaeijo, C. G. Rookyard, M. R. Salmanpour, A. Schindele, I. Shiri, E. Spezi, S. Tanadini-Lang, F. Tixier, T. Upadhaya, V. Valentini, J. J. M. van Griethuysen, F. Yousefirizi, H. Zaidi, H. Müller, M. Vallières, and A. Depeursinge. The image biomarker standardization initiative: Standardized convolutional filters for reproducible radiomics and enhanced clinical insights. Radiology, 310(2):e231319, 2024. Winkels and Cohen 2019 M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Phys. Med. Biol., 60(14):5471–5496, 2015b. van Griethuysen et al. 2017 J. J. M. van Griethuysen, A. Fedorov, C. Parmar, A. Hosny, N. Aucoin, V. Narayan, R. G. H. Beets-Tan, J.-C. Fillion-Robin, S. Pieper, and H. J. W. L. Aerts. Computational radiomics system to decode the radiographic phenotype. Cancer Res., 77(21):e104–e107, 2017. Weiler et al. 2018a M. Weiler, M. Geiger, M. Welling, W. Boomsma, and T. Cohen. 3D steerable CNNs: Learning rotationally equivariant features in volumetric data. In Advances in Neural Information Processing Systems, volume 2018-December, pages 10381–10392. Neural information processing systems foundation, 2018a. Weiler et al. 2018b M. Weiler, F. A. Hamprecht, and M. Storath. Learning Steerable Filters for Rotation Equivariant CNNs. CoRR, abs/1711.0, 2018b. Whybra et al. 2024 P. Whybra, A. Zwanenburg, V. Andrearczyk, R. Schaer, A. P. Apte, A. Ayotte, B. Baheti, S. Bakas, A. Bettinelli, R. Boellaard, L. Boldrini, I. Buvat, G. J. R. Cook, F. Dietsche, N. Dinapoli, H. S. Gabryś, V. Goh, M. Guckenberger, M. Hatt, M. Hosseinzadeh, A. Iyer, J. Lenkowicz, M. A. L. Loutfi, S. Löck, F. Marturano, O. Morin, C. Nioche, F. Orlhac, S. Pati, A. Rahmim, S. M. Rezaeijo, C. G. Rookyard, M. R. Salmanpour, A. Schindele, I. Shiri, E. Spezi, S. Tanadini-Lang, F. Tixier, T. Upadhaya, V. Valentini, J. J. M. van Griethuysen, F. Yousefirizi, H. Zaidi, H. Müller, M. Vallières, and A. Depeursinge. The image biomarker standardization initiative: Standardized convolutional filters for reproducible radiomics and enhanced clinical insights. Radiology, 310(2):e231319, 2024. Winkels and Cohen 2019 M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. J. J. M. van Griethuysen, A. Fedorov, C. Parmar, A. Hosny, N. Aucoin, V. Narayan, R. G. H. Beets-Tan, J.-C. Fillion-Robin, S. Pieper, and H. J. W. L. Aerts. Computational radiomics system to decode the radiographic phenotype. Cancer Res., 77(21):e104–e107, 2017. Weiler et al. 2018a M. Weiler, M. Geiger, M. Welling, W. Boomsma, and T. Cohen. 3D steerable CNNs: Learning rotationally equivariant features in volumetric data. In Advances in Neural Information Processing Systems, volume 2018-December, pages 10381–10392. Neural information processing systems foundation, 2018a. Weiler et al. 2018b M. Weiler, F. A. Hamprecht, and M. Storath. Learning Steerable Filters for Rotation Equivariant CNNs. CoRR, abs/1711.0, 2018b. Whybra et al. 2024 P. Whybra, A. Zwanenburg, V. Andrearczyk, R. Schaer, A. P. Apte, A. Ayotte, B. Baheti, S. Bakas, A. Bettinelli, R. Boellaard, L. Boldrini, I. Buvat, G. J. R. Cook, F. Dietsche, N. Dinapoli, H. S. Gabryś, V. Goh, M. Guckenberger, M. Hatt, M. Hosseinzadeh, A. Iyer, J. Lenkowicz, M. A. L. Loutfi, S. Löck, F. Marturano, O. Morin, C. Nioche, F. Orlhac, S. Pati, A. Rahmim, S. M. Rezaeijo, C. G. Rookyard, M. R. Salmanpour, A. Schindele, I. Shiri, E. Spezi, S. Tanadini-Lang, F. Tixier, T. Upadhaya, V. Valentini, J. J. M. van Griethuysen, F. Yousefirizi, H. Zaidi, H. Müller, M. Vallières, and A. Depeursinge. The image biomarker standardization initiative: Standardized convolutional filters for reproducible radiomics and enhanced clinical insights. Radiology, 310(2):e231319, 2024. Winkels and Cohen 2019 M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. M. Weiler, M. Geiger, M. Welling, W. Boomsma, and T. Cohen. 3D steerable CNNs: Learning rotationally equivariant features in volumetric data. In Advances in Neural Information Processing Systems, volume 2018-December, pages 10381–10392. Neural information processing systems foundation, 2018a. Weiler et al. 2018b M. Weiler, F. A. Hamprecht, and M. Storath. Learning Steerable Filters for Rotation Equivariant CNNs. CoRR, abs/1711.0, 2018b. Whybra et al. 2024 P. Whybra, A. Zwanenburg, V. Andrearczyk, R. Schaer, A. P. Apte, A. Ayotte, B. Baheti, S. Bakas, A. Bettinelli, R. Boellaard, L. Boldrini, I. Buvat, G. J. R. Cook, F. Dietsche, N. Dinapoli, H. S. Gabryś, V. Goh, M. Guckenberger, M. Hatt, M. Hosseinzadeh, A. Iyer, J. Lenkowicz, M. A. L. Loutfi, S. Löck, F. Marturano, O. Morin, C. Nioche, F. Orlhac, S. Pati, A. Rahmim, S. M. Rezaeijo, C. G. Rookyard, M. R. Salmanpour, A. Schindele, I. Shiri, E. Spezi, S. Tanadini-Lang, F. Tixier, T. Upadhaya, V. Valentini, J. J. M. van Griethuysen, F. Yousefirizi, H. Zaidi, H. Müller, M. Vallières, and A. Depeursinge. The image biomarker standardization initiative: Standardized convolutional filters for reproducible radiomics and enhanced clinical insights. Radiology, 310(2):e231319, 2024. Winkels and Cohen 2019 M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. M. Weiler, F. A. Hamprecht, and M. Storath. Learning Steerable Filters for Rotation Equivariant CNNs. CoRR, abs/1711.0, 2018b. Whybra et al. 2024 P. Whybra, A. Zwanenburg, V. Andrearczyk, R. Schaer, A. P. Apte, A. Ayotte, B. Baheti, S. Bakas, A. Bettinelli, R. Boellaard, L. Boldrini, I. Buvat, G. J. R. Cook, F. Dietsche, N. Dinapoli, H. S. Gabryś, V. Goh, M. Guckenberger, M. Hatt, M. Hosseinzadeh, A. Iyer, J. Lenkowicz, M. A. L. Loutfi, S. Löck, F. Marturano, O. Morin, C. Nioche, F. Orlhac, S. Pati, A. Rahmim, S. M. Rezaeijo, C. G. Rookyard, M. R. Salmanpour, A. Schindele, I. Shiri, E. Spezi, S. Tanadini-Lang, F. Tixier, T. Upadhaya, V. Valentini, J. J. M. van Griethuysen, F. Yousefirizi, H. Zaidi, H. Müller, M. Vallières, and A. Depeursinge. The image biomarker standardization initiative: Standardized convolutional filters for reproducible radiomics and enhanced clinical insights. Radiology, 310(2):e231319, 2024. Winkels and Cohen 2019 M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. P. Whybra, A. Zwanenburg, V. Andrearczyk, R. Schaer, A. P. Apte, A. Ayotte, B. Baheti, S. Bakas, A. Bettinelli, R. Boellaard, L. Boldrini, I. Buvat, G. J. R. Cook, F. Dietsche, N. Dinapoli, H. S. Gabryś, V. Goh, M. Guckenberger, M. Hatt, M. Hosseinzadeh, A. Iyer, J. Lenkowicz, M. A. L. Loutfi, S. Löck, F. Marturano, O. Morin, C. Nioche, F. Orlhac, S. Pati, A. Rahmim, S. M. Rezaeijo, C. G. Rookyard, M. R. Salmanpour, A. Schindele, I. Shiri, E. Spezi, S. Tanadini-Lang, F. Tixier, T. Upadhaya, V. Valentini, J. J. M. van Griethuysen, F. Yousefirizi, H. Zaidi, H. Müller, M. Vallières, and A. Depeursinge. The image biomarker standardization initiative: Standardized convolutional filters for reproducible radiomics and enhanced clinical insights. Radiology, 310(2):e231319, 2024. Winkels and Cohen 2019 M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020.
- Textural Features Corresponding to Visual Perception. IEEE Transactions on Systems, Man and Cybernetics, 8(6):460–473, 1978. Tustison et al. 2010 N. J. Tustison, B. B. Avants, P. A. Cook, Y. Zheng, A. Egan, P. A. Yushkevich, and J. C. Gee. N4ITK: improved N3 bias correction. IEEE Trans. Med. Imaging, 29(6):1310–1320, 2010. Unser 2012 M. Unser. Image Processing I and II. Ecole polytechnique fédérale de Lausanne (EPFL), 2012. Unser and Van De Ville 2010 M. Unser and D. Van De Ville. Wavelet steerability and the higher-order Riesz transform. IEEE Transactions on Image Processing, 19(3):636–652, 2010. Unser et al. 2011 M. Unser, N. Chenouard, and D. Van De Ville. Steerable Pyramids and Tight Wavelet Frames in L2(ℝd)subscript𝐿2superscriptℝ𝑑L_{2}(\mathbb{R}^{d})italic_L start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( blackboard_R start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT ). IEEE Transactions on Image Processing, 20(10):2705–2721, 2011. Vallières et al. 2015a M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. Data from: A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities, 2015a. Vallières et al. 2015b M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Phys. Med. Biol., 60(14):5471–5496, 2015b. van Griethuysen et al. 2017 J. J. M. van Griethuysen, A. Fedorov, C. Parmar, A. Hosny, N. Aucoin, V. Narayan, R. G. H. Beets-Tan, J.-C. Fillion-Robin, S. Pieper, and H. J. W. L. Aerts. Computational radiomics system to decode the radiographic phenotype. Cancer Res., 77(21):e104–e107, 2017. Weiler et al. 2018a M. Weiler, M. Geiger, M. Welling, W. Boomsma, and T. Cohen. 3D steerable CNNs: Learning rotationally equivariant features in volumetric data. In Advances in Neural Information Processing Systems, volume 2018-December, pages 10381–10392. Neural information processing systems foundation, 2018a. Weiler et al. 2018b M. Weiler, F. A. Hamprecht, and M. Storath. Learning Steerable Filters for Rotation Equivariant CNNs. CoRR, abs/1711.0, 2018b. Whybra et al. 2024 P. Whybra, A. Zwanenburg, V. Andrearczyk, R. Schaer, A. P. Apte, A. Ayotte, B. Baheti, S. Bakas, A. Bettinelli, R. Boellaard, L. Boldrini, I. Buvat, G. J. R. Cook, F. Dietsche, N. Dinapoli, H. S. Gabryś, V. Goh, M. Guckenberger, M. Hatt, M. Hosseinzadeh, A. Iyer, J. Lenkowicz, M. A. L. Loutfi, S. Löck, F. Marturano, O. Morin, C. Nioche, F. Orlhac, S. Pati, A. Rahmim, S. M. Rezaeijo, C. G. Rookyard, M. R. Salmanpour, A. Schindele, I. Shiri, E. Spezi, S. Tanadini-Lang, F. Tixier, T. Upadhaya, V. Valentini, J. J. M. van Griethuysen, F. Yousefirizi, H. Zaidi, H. Müller, M. Vallières, and A. Depeursinge. The image biomarker standardization initiative: Standardized convolutional filters for reproducible radiomics and enhanced clinical insights. Radiology, 310(2):e231319, 2024. Winkels and Cohen 2019 M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. N. J. Tustison, B. B. Avants, P. A. Cook, Y. Zheng, A. Egan, P. A. Yushkevich, and J. C. Gee. N4ITK: improved N3 bias correction. IEEE Trans. Med. Imaging, 29(6):1310–1320, 2010. Unser 2012 M. Unser. Image Processing I and II. Ecole polytechnique fédérale de Lausanne (EPFL), 2012. Unser and Van De Ville 2010 M. Unser and D. Van De Ville. Wavelet steerability and the higher-order Riesz transform. IEEE Transactions on Image Processing, 19(3):636–652, 2010. Unser et al. 2011 M. Unser, N. Chenouard, and D. Van De Ville. Steerable Pyramids and Tight Wavelet Frames in L2(ℝd)subscript𝐿2superscriptℝ𝑑L_{2}(\mathbb{R}^{d})italic_L start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( blackboard_R start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT ). IEEE Transactions on Image Processing, 20(10):2705–2721, 2011. Vallières et al. 2015a M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. Data from: A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities, 2015a. Vallières et al. 2015b M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Phys. Med. Biol., 60(14):5471–5496, 2015b. van Griethuysen et al. 2017 J. J. M. van Griethuysen, A. Fedorov, C. Parmar, A. Hosny, N. Aucoin, V. Narayan, R. G. H. Beets-Tan, J.-C. Fillion-Robin, S. Pieper, and H. J. W. L. Aerts. Computational radiomics system to decode the radiographic phenotype. Cancer Res., 77(21):e104–e107, 2017. Weiler et al. 2018a M. Weiler, M. Geiger, M. Welling, W. Boomsma, and T. Cohen. 3D steerable CNNs: Learning rotationally equivariant features in volumetric data. In Advances in Neural Information Processing Systems, volume 2018-December, pages 10381–10392. Neural information processing systems foundation, 2018a. Weiler et al. 2018b M. Weiler, F. A. Hamprecht, and M. Storath. Learning Steerable Filters for Rotation Equivariant CNNs. CoRR, abs/1711.0, 2018b. Whybra et al. 2024 P. Whybra, A. Zwanenburg, V. Andrearczyk, R. Schaer, A. P. Apte, A. Ayotte, B. Baheti, S. Bakas, A. Bettinelli, R. Boellaard, L. Boldrini, I. Buvat, G. J. R. Cook, F. Dietsche, N. Dinapoli, H. S. Gabryś, V. Goh, M. Guckenberger, M. Hatt, M. Hosseinzadeh, A. Iyer, J. Lenkowicz, M. A. L. Loutfi, S. Löck, F. Marturano, O. Morin, C. Nioche, F. Orlhac, S. Pati, A. Rahmim, S. M. Rezaeijo, C. G. Rookyard, M. R. Salmanpour, A. Schindele, I. Shiri, E. Spezi, S. Tanadini-Lang, F. Tixier, T. Upadhaya, V. Valentini, J. J. M. van Griethuysen, F. Yousefirizi, H. Zaidi, H. Müller, M. Vallières, and A. Depeursinge. The image biomarker standardization initiative: Standardized convolutional filters for reproducible radiomics and enhanced clinical insights. Radiology, 310(2):e231319, 2024. Winkels and Cohen 2019 M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. M. Unser. Image Processing I and II. Ecole polytechnique fédérale de Lausanne (EPFL), 2012. Unser and Van De Ville 2010 M. Unser and D. Van De Ville. Wavelet steerability and the higher-order Riesz transform. IEEE Transactions on Image Processing, 19(3):636–652, 2010. Unser et al. 2011 M. Unser, N. Chenouard, and D. Van De Ville. Steerable Pyramids and Tight Wavelet Frames in L2(ℝd)subscript𝐿2superscriptℝ𝑑L_{2}(\mathbb{R}^{d})italic_L start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( blackboard_R start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT ). IEEE Transactions on Image Processing, 20(10):2705–2721, 2011. Vallières et al. 2015a M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. Data from: A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities, 2015a. Vallières et al. 2015b M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Phys. Med. Biol., 60(14):5471–5496, 2015b. van Griethuysen et al. 2017 J. J. M. van Griethuysen, A. Fedorov, C. Parmar, A. Hosny, N. Aucoin, V. Narayan, R. G. H. Beets-Tan, J.-C. Fillion-Robin, S. Pieper, and H. J. W. L. Aerts. Computational radiomics system to decode the radiographic phenotype. Cancer Res., 77(21):e104–e107, 2017. Weiler et al. 2018a M. Weiler, M. Geiger, M. Welling, W. Boomsma, and T. Cohen. 3D steerable CNNs: Learning rotationally equivariant features in volumetric data. In Advances in Neural Information Processing Systems, volume 2018-December, pages 10381–10392. Neural information processing systems foundation, 2018a. Weiler et al. 2018b M. Weiler, F. A. Hamprecht, and M. Storath. Learning Steerable Filters for Rotation Equivariant CNNs. CoRR, abs/1711.0, 2018b. Whybra et al. 2024 P. Whybra, A. Zwanenburg, V. Andrearczyk, R. Schaer, A. P. Apte, A. Ayotte, B. Baheti, S. Bakas, A. Bettinelli, R. Boellaard, L. Boldrini, I. Buvat, G. J. R. Cook, F. Dietsche, N. Dinapoli, H. S. Gabryś, V. Goh, M. Guckenberger, M. Hatt, M. Hosseinzadeh, A. Iyer, J. Lenkowicz, M. A. L. Loutfi, S. Löck, F. Marturano, O. Morin, C. Nioche, F. Orlhac, S. Pati, A. Rahmim, S. M. Rezaeijo, C. G. Rookyard, M. R. Salmanpour, A. Schindele, I. Shiri, E. Spezi, S. Tanadini-Lang, F. Tixier, T. Upadhaya, V. Valentini, J. J. M. van Griethuysen, F. Yousefirizi, H. Zaidi, H. Müller, M. Vallières, and A. Depeursinge. The image biomarker standardization initiative: Standardized convolutional filters for reproducible radiomics and enhanced clinical insights. Radiology, 310(2):e231319, 2024. Winkels and Cohen 2019 M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. M. Unser and D. Van De Ville. Wavelet steerability and the higher-order Riesz transform. IEEE Transactions on Image Processing, 19(3):636–652, 2010. Unser et al. 2011 M. Unser, N. Chenouard, and D. Van De Ville. Steerable Pyramids and Tight Wavelet Frames in L2(ℝd)subscript𝐿2superscriptℝ𝑑L_{2}(\mathbb{R}^{d})italic_L start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( blackboard_R start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT ). IEEE Transactions on Image Processing, 20(10):2705–2721, 2011. Vallières et al. 2015a M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. Data from: A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities, 2015a. Vallières et al. 2015b M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Phys. Med. Biol., 60(14):5471–5496, 2015b. van Griethuysen et al. 2017 J. J. M. van Griethuysen, A. Fedorov, C. Parmar, A. Hosny, N. Aucoin, V. Narayan, R. G. H. Beets-Tan, J.-C. Fillion-Robin, S. Pieper, and H. J. W. L. Aerts. Computational radiomics system to decode the radiographic phenotype. Cancer Res., 77(21):e104–e107, 2017. Weiler et al. 2018a M. Weiler, M. Geiger, M. Welling, W. Boomsma, and T. Cohen. 3D steerable CNNs: Learning rotationally equivariant features in volumetric data. In Advances in Neural Information Processing Systems, volume 2018-December, pages 10381–10392. Neural information processing systems foundation, 2018a. Weiler et al. 2018b M. Weiler, F. A. Hamprecht, and M. Storath. Learning Steerable Filters for Rotation Equivariant CNNs. CoRR, abs/1711.0, 2018b. Whybra et al. 2024 P. Whybra, A. Zwanenburg, V. Andrearczyk, R. Schaer, A. P. Apte, A. Ayotte, B. Baheti, S. Bakas, A. Bettinelli, R. Boellaard, L. Boldrini, I. Buvat, G. J. R. Cook, F. Dietsche, N. Dinapoli, H. S. Gabryś, V. Goh, M. Guckenberger, M. Hatt, M. Hosseinzadeh, A. Iyer, J. Lenkowicz, M. A. L. Loutfi, S. Löck, F. Marturano, O. Morin, C. Nioche, F. Orlhac, S. Pati, A. Rahmim, S. M. Rezaeijo, C. G. Rookyard, M. R. Salmanpour, A. Schindele, I. Shiri, E. Spezi, S. Tanadini-Lang, F. Tixier, T. Upadhaya, V. Valentini, J. J. M. van Griethuysen, F. Yousefirizi, H. Zaidi, H. Müller, M. Vallières, and A. Depeursinge. The image biomarker standardization initiative: Standardized convolutional filters for reproducible radiomics and enhanced clinical insights. Radiology, 310(2):e231319, 2024. Winkels and Cohen 2019 M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. M. Unser, N. Chenouard, and D. Van De Ville. Steerable Pyramids and Tight Wavelet Frames in L2(ℝd)subscript𝐿2superscriptℝ𝑑L_{2}(\mathbb{R}^{d})italic_L start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( blackboard_R start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT ). IEEE Transactions on Image Processing, 20(10):2705–2721, 2011. Vallières et al. 2015a M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. Data from: A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities, 2015a. Vallières et al. 2015b M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Phys. Med. Biol., 60(14):5471–5496, 2015b. van Griethuysen et al. 2017 J. J. M. van Griethuysen, A. Fedorov, C. Parmar, A. Hosny, N. Aucoin, V. Narayan, R. G. H. Beets-Tan, J.-C. Fillion-Robin, S. Pieper, and H. J. W. L. Aerts. Computational radiomics system to decode the radiographic phenotype. Cancer Res., 77(21):e104–e107, 2017. Weiler et al. 2018a M. Weiler, M. Geiger, M. Welling, W. Boomsma, and T. Cohen. 3D steerable CNNs: Learning rotationally equivariant features in volumetric data. In Advances in Neural Information Processing Systems, volume 2018-December, pages 10381–10392. Neural information processing systems foundation, 2018a. Weiler et al. 2018b M. Weiler, F. A. Hamprecht, and M. Storath. Learning Steerable Filters for Rotation Equivariant CNNs. CoRR, abs/1711.0, 2018b. Whybra et al. 2024 P. Whybra, A. Zwanenburg, V. Andrearczyk, R. Schaer, A. P. Apte, A. Ayotte, B. Baheti, S. Bakas, A. Bettinelli, R. Boellaard, L. Boldrini, I. Buvat, G. J. R. Cook, F. Dietsche, N. Dinapoli, H. S. Gabryś, V. Goh, M. Guckenberger, M. Hatt, M. Hosseinzadeh, A. Iyer, J. Lenkowicz, M. A. L. Loutfi, S. Löck, F. Marturano, O. Morin, C. Nioche, F. Orlhac, S. Pati, A. Rahmim, S. M. Rezaeijo, C. G. Rookyard, M. R. Salmanpour, A. Schindele, I. Shiri, E. Spezi, S. Tanadini-Lang, F. Tixier, T. Upadhaya, V. Valentini, J. J. M. van Griethuysen, F. Yousefirizi, H. Zaidi, H. Müller, M. Vallières, and A. Depeursinge. The image biomarker standardization initiative: Standardized convolutional filters for reproducible radiomics and enhanced clinical insights. Radiology, 310(2):e231319, 2024. Winkels and Cohen 2019 M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. Data from: A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities, 2015a. Vallières et al. 2015b M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Phys. Med. Biol., 60(14):5471–5496, 2015b. van Griethuysen et al. 2017 J. J. M. van Griethuysen, A. Fedorov, C. Parmar, A. Hosny, N. Aucoin, V. Narayan, R. G. H. Beets-Tan, J.-C. Fillion-Robin, S. Pieper, and H. J. W. L. Aerts. Computational radiomics system to decode the radiographic phenotype. Cancer Res., 77(21):e104–e107, 2017. Weiler et al. 2018a M. Weiler, M. Geiger, M. Welling, W. Boomsma, and T. Cohen. 3D steerable CNNs: Learning rotationally equivariant features in volumetric data. In Advances in Neural Information Processing Systems, volume 2018-December, pages 10381–10392. Neural information processing systems foundation, 2018a. Weiler et al. 2018b M. Weiler, F. A. Hamprecht, and M. Storath. Learning Steerable Filters for Rotation Equivariant CNNs. CoRR, abs/1711.0, 2018b. Whybra et al. 2024 P. Whybra, A. Zwanenburg, V. Andrearczyk, R. Schaer, A. P. Apte, A. Ayotte, B. Baheti, S. Bakas, A. Bettinelli, R. Boellaard, L. Boldrini, I. Buvat, G. J. R. Cook, F. Dietsche, N. Dinapoli, H. S. Gabryś, V. Goh, M. Guckenberger, M. Hatt, M. Hosseinzadeh, A. Iyer, J. Lenkowicz, M. A. L. Loutfi, S. Löck, F. Marturano, O. Morin, C. Nioche, F. Orlhac, S. Pati, A. Rahmim, S. M. Rezaeijo, C. G. Rookyard, M. R. Salmanpour, A. Schindele, I. Shiri, E. Spezi, S. Tanadini-Lang, F. Tixier, T. Upadhaya, V. Valentini, J. J. M. van Griethuysen, F. Yousefirizi, H. Zaidi, H. Müller, M. Vallières, and A. Depeursinge. The image biomarker standardization initiative: Standardized convolutional filters for reproducible radiomics and enhanced clinical insights. Radiology, 310(2):e231319, 2024. Winkels and Cohen 2019 M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Phys. Med. Biol., 60(14):5471–5496, 2015b. van Griethuysen et al. 2017 J. J. M. van Griethuysen, A. Fedorov, C. Parmar, A. Hosny, N. Aucoin, V. Narayan, R. G. H. Beets-Tan, J.-C. Fillion-Robin, S. Pieper, and H. J. W. L. Aerts. Computational radiomics system to decode the radiographic phenotype. Cancer Res., 77(21):e104–e107, 2017. Weiler et al. 2018a M. Weiler, M. Geiger, M. Welling, W. Boomsma, and T. Cohen. 3D steerable CNNs: Learning rotationally equivariant features in volumetric data. In Advances in Neural Information Processing Systems, volume 2018-December, pages 10381–10392. Neural information processing systems foundation, 2018a. Weiler et al. 2018b M. Weiler, F. A. Hamprecht, and M. Storath. Learning Steerable Filters for Rotation Equivariant CNNs. CoRR, abs/1711.0, 2018b. Whybra et al. 2024 P. Whybra, A. Zwanenburg, V. Andrearczyk, R. Schaer, A. P. Apte, A. Ayotte, B. Baheti, S. Bakas, A. Bettinelli, R. Boellaard, L. Boldrini, I. Buvat, G. J. R. Cook, F. Dietsche, N. Dinapoli, H. S. Gabryś, V. Goh, M. Guckenberger, M. Hatt, M. Hosseinzadeh, A. Iyer, J. Lenkowicz, M. A. L. Loutfi, S. Löck, F. Marturano, O. Morin, C. Nioche, F. Orlhac, S. Pati, A. Rahmim, S. M. Rezaeijo, C. G. Rookyard, M. R. Salmanpour, A. Schindele, I. Shiri, E. Spezi, S. Tanadini-Lang, F. Tixier, T. Upadhaya, V. Valentini, J. J. M. van Griethuysen, F. Yousefirizi, H. Zaidi, H. Müller, M. Vallières, and A. Depeursinge. The image biomarker standardization initiative: Standardized convolutional filters for reproducible radiomics and enhanced clinical insights. Radiology, 310(2):e231319, 2024. Winkels and Cohen 2019 M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. J. J. M. van Griethuysen, A. Fedorov, C. Parmar, A. Hosny, N. Aucoin, V. Narayan, R. G. H. Beets-Tan, J.-C. Fillion-Robin, S. Pieper, and H. J. W. L. Aerts. Computational radiomics system to decode the radiographic phenotype. Cancer Res., 77(21):e104–e107, 2017. Weiler et al. 2018a M. Weiler, M. Geiger, M. Welling, W. Boomsma, and T. Cohen. 3D steerable CNNs: Learning rotationally equivariant features in volumetric data. In Advances in Neural Information Processing Systems, volume 2018-December, pages 10381–10392. Neural information processing systems foundation, 2018a. Weiler et al. 2018b M. Weiler, F. A. Hamprecht, and M. Storath. Learning Steerable Filters for Rotation Equivariant CNNs. CoRR, abs/1711.0, 2018b. Whybra et al. 2024 P. Whybra, A. Zwanenburg, V. Andrearczyk, R. Schaer, A. P. Apte, A. Ayotte, B. Baheti, S. Bakas, A. Bettinelli, R. Boellaard, L. Boldrini, I. Buvat, G. J. R. Cook, F. Dietsche, N. Dinapoli, H. S. Gabryś, V. Goh, M. Guckenberger, M. Hatt, M. Hosseinzadeh, A. Iyer, J. Lenkowicz, M. A. L. Loutfi, S. Löck, F. Marturano, O. Morin, C. Nioche, F. Orlhac, S. Pati, A. Rahmim, S. M. Rezaeijo, C. G. Rookyard, M. R. Salmanpour, A. Schindele, I. Shiri, E. Spezi, S. Tanadini-Lang, F. Tixier, T. Upadhaya, V. Valentini, J. J. M. van Griethuysen, F. Yousefirizi, H. Zaidi, H. Müller, M. Vallières, and A. Depeursinge. The image biomarker standardization initiative: Standardized convolutional filters for reproducible radiomics and enhanced clinical insights. Radiology, 310(2):e231319, 2024. Winkels and Cohen 2019 M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. M. Weiler, M. Geiger, M. Welling, W. Boomsma, and T. Cohen. 3D steerable CNNs: Learning rotationally equivariant features in volumetric data. In Advances in Neural Information Processing Systems, volume 2018-December, pages 10381–10392. Neural information processing systems foundation, 2018a. Weiler et al. 2018b M. Weiler, F. A. Hamprecht, and M. Storath. Learning Steerable Filters for Rotation Equivariant CNNs. CoRR, abs/1711.0, 2018b. Whybra et al. 2024 P. Whybra, A. Zwanenburg, V. Andrearczyk, R. Schaer, A. P. Apte, A. Ayotte, B. Baheti, S. Bakas, A. Bettinelli, R. Boellaard, L. Boldrini, I. Buvat, G. J. R. Cook, F. Dietsche, N. Dinapoli, H. S. Gabryś, V. Goh, M. Guckenberger, M. Hatt, M. Hosseinzadeh, A. Iyer, J. Lenkowicz, M. A. L. Loutfi, S. Löck, F. Marturano, O. Morin, C. Nioche, F. Orlhac, S. Pati, A. Rahmim, S. M. Rezaeijo, C. G. Rookyard, M. R. Salmanpour, A. Schindele, I. Shiri, E. Spezi, S. Tanadini-Lang, F. Tixier, T. Upadhaya, V. Valentini, J. J. M. van Griethuysen, F. Yousefirizi, H. Zaidi, H. Müller, M. Vallières, and A. Depeursinge. The image biomarker standardization initiative: Standardized convolutional filters for reproducible radiomics and enhanced clinical insights. Radiology, 310(2):e231319, 2024. Winkels and Cohen 2019 M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. M. Weiler, F. A. Hamprecht, and M. Storath. Learning Steerable Filters for Rotation Equivariant CNNs. CoRR, abs/1711.0, 2018b. Whybra et al. 2024 P. Whybra, A. Zwanenburg, V. Andrearczyk, R. Schaer, A. P. Apte, A. Ayotte, B. Baheti, S. Bakas, A. Bettinelli, R. Boellaard, L. Boldrini, I. Buvat, G. J. R. Cook, F. Dietsche, N. Dinapoli, H. S. Gabryś, V. Goh, M. Guckenberger, M. Hatt, M. Hosseinzadeh, A. Iyer, J. Lenkowicz, M. A. L. Loutfi, S. Löck, F. Marturano, O. Morin, C. Nioche, F. Orlhac, S. Pati, A. Rahmim, S. M. Rezaeijo, C. G. Rookyard, M. R. Salmanpour, A. Schindele, I. Shiri, E. Spezi, S. Tanadini-Lang, F. Tixier, T. Upadhaya, V. Valentini, J. J. M. van Griethuysen, F. Yousefirizi, H. Zaidi, H. Müller, M. Vallières, and A. Depeursinge. The image biomarker standardization initiative: Standardized convolutional filters for reproducible radiomics and enhanced clinical insights. Radiology, 310(2):e231319, 2024. Winkels and Cohen 2019 M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. P. Whybra, A. Zwanenburg, V. Andrearczyk, R. Schaer, A. P. Apte, A. Ayotte, B. Baheti, S. Bakas, A. Bettinelli, R. Boellaard, L. Boldrini, I. Buvat, G. J. R. Cook, F. Dietsche, N. Dinapoli, H. S. Gabryś, V. Goh, M. Guckenberger, M. Hatt, M. Hosseinzadeh, A. Iyer, J. Lenkowicz, M. A. L. Loutfi, S. Löck, F. Marturano, O. Morin, C. Nioche, F. Orlhac, S. Pati, A. Rahmim, S. M. Rezaeijo, C. G. Rookyard, M. R. Salmanpour, A. Schindele, I. Shiri, E. Spezi, S. Tanadini-Lang, F. Tixier, T. Upadhaya, V. Valentini, J. J. M. van Griethuysen, F. Yousefirizi, H. Zaidi, H. Müller, M. Vallières, and A. Depeursinge. The image biomarker standardization initiative: Standardized convolutional filters for reproducible radiomics and enhanced clinical insights. Radiology, 310(2):e231319, 2024. Winkels and Cohen 2019 M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020.
- N4ITK: improved N3 bias correction. IEEE Trans. Med. Imaging, 29(6):1310–1320, 2010. Unser 2012 M. Unser. Image Processing I and II. Ecole polytechnique fédérale de Lausanne (EPFL), 2012. Unser and Van De Ville 2010 M. Unser and D. Van De Ville. Wavelet steerability and the higher-order Riesz transform. IEEE Transactions on Image Processing, 19(3):636–652, 2010. Unser et al. 2011 M. Unser, N. Chenouard, and D. Van De Ville. Steerable Pyramids and Tight Wavelet Frames in L2(ℝd)subscript𝐿2superscriptℝ𝑑L_{2}(\mathbb{R}^{d})italic_L start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( blackboard_R start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT ). IEEE Transactions on Image Processing, 20(10):2705–2721, 2011. Vallières et al. 2015a M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. Data from: A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities, 2015a. Vallières et al. 2015b M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Phys. Med. Biol., 60(14):5471–5496, 2015b. van Griethuysen et al. 2017 J. J. M. van Griethuysen, A. Fedorov, C. Parmar, A. Hosny, N. Aucoin, V. Narayan, R. G. H. Beets-Tan, J.-C. Fillion-Robin, S. Pieper, and H. J. W. L. Aerts. Computational radiomics system to decode the radiographic phenotype. Cancer Res., 77(21):e104–e107, 2017. Weiler et al. 2018a M. Weiler, M. Geiger, M. Welling, W. Boomsma, and T. Cohen. 3D steerable CNNs: Learning rotationally equivariant features in volumetric data. In Advances in Neural Information Processing Systems, volume 2018-December, pages 10381–10392. Neural information processing systems foundation, 2018a. Weiler et al. 2018b M. Weiler, F. A. Hamprecht, and M. Storath. Learning Steerable Filters for Rotation Equivariant CNNs. CoRR, abs/1711.0, 2018b. Whybra et al. 2024 P. Whybra, A. Zwanenburg, V. Andrearczyk, R. Schaer, A. P. Apte, A. Ayotte, B. Baheti, S. Bakas, A. Bettinelli, R. Boellaard, L. Boldrini, I. Buvat, G. J. R. Cook, F. Dietsche, N. Dinapoli, H. S. Gabryś, V. Goh, M. Guckenberger, M. Hatt, M. Hosseinzadeh, A. Iyer, J. Lenkowicz, M. A. L. Loutfi, S. Löck, F. Marturano, O. Morin, C. Nioche, F. Orlhac, S. Pati, A. Rahmim, S. M. Rezaeijo, C. G. Rookyard, M. R. Salmanpour, A. Schindele, I. Shiri, E. Spezi, S. Tanadini-Lang, F. Tixier, T. Upadhaya, V. Valentini, J. J. M. van Griethuysen, F. Yousefirizi, H. Zaidi, H. Müller, M. Vallières, and A. Depeursinge. The image biomarker standardization initiative: Standardized convolutional filters for reproducible radiomics and enhanced clinical insights. Radiology, 310(2):e231319, 2024. Winkels and Cohen 2019 M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. M. Unser. Image Processing I and II. Ecole polytechnique fédérale de Lausanne (EPFL), 2012. Unser and Van De Ville 2010 M. Unser and D. Van De Ville. Wavelet steerability and the higher-order Riesz transform. IEEE Transactions on Image Processing, 19(3):636–652, 2010. Unser et al. 2011 M. Unser, N. Chenouard, and D. Van De Ville. Steerable Pyramids and Tight Wavelet Frames in L2(ℝd)subscript𝐿2superscriptℝ𝑑L_{2}(\mathbb{R}^{d})italic_L start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( blackboard_R start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT ). IEEE Transactions on Image Processing, 20(10):2705–2721, 2011. Vallières et al. 2015a M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. Data from: A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities, 2015a. Vallières et al. 2015b M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Phys. Med. Biol., 60(14):5471–5496, 2015b. van Griethuysen et al. 2017 J. J. M. van Griethuysen, A. Fedorov, C. Parmar, A. Hosny, N. Aucoin, V. Narayan, R. G. H. Beets-Tan, J.-C. Fillion-Robin, S. Pieper, and H. J. W. L. Aerts. Computational radiomics system to decode the radiographic phenotype. Cancer Res., 77(21):e104–e107, 2017. Weiler et al. 2018a M. Weiler, M. Geiger, M. Welling, W. Boomsma, and T. Cohen. 3D steerable CNNs: Learning rotationally equivariant features in volumetric data. In Advances in Neural Information Processing Systems, volume 2018-December, pages 10381–10392. Neural information processing systems foundation, 2018a. Weiler et al. 2018b M. Weiler, F. A. Hamprecht, and M. Storath. Learning Steerable Filters for Rotation Equivariant CNNs. CoRR, abs/1711.0, 2018b. Whybra et al. 2024 P. Whybra, A. Zwanenburg, V. Andrearczyk, R. Schaer, A. P. Apte, A. Ayotte, B. Baheti, S. Bakas, A. Bettinelli, R. Boellaard, L. Boldrini, I. Buvat, G. J. R. Cook, F. Dietsche, N. Dinapoli, H. S. Gabryś, V. Goh, M. Guckenberger, M. Hatt, M. Hosseinzadeh, A. Iyer, J. Lenkowicz, M. A. L. Loutfi, S. Löck, F. Marturano, O. Morin, C. Nioche, F. Orlhac, S. Pati, A. Rahmim, S. M. Rezaeijo, C. G. Rookyard, M. R. Salmanpour, A. Schindele, I. Shiri, E. Spezi, S. Tanadini-Lang, F. Tixier, T. Upadhaya, V. Valentini, J. J. M. van Griethuysen, F. Yousefirizi, H. Zaidi, H. Müller, M. Vallières, and A. Depeursinge. The image biomarker standardization initiative: Standardized convolutional filters for reproducible radiomics and enhanced clinical insights. Radiology, 310(2):e231319, 2024. Winkels and Cohen 2019 M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. M. Unser and D. Van De Ville. Wavelet steerability and the higher-order Riesz transform. IEEE Transactions on Image Processing, 19(3):636–652, 2010. Unser et al. 2011 M. Unser, N. Chenouard, and D. Van De Ville. Steerable Pyramids and Tight Wavelet Frames in L2(ℝd)subscript𝐿2superscriptℝ𝑑L_{2}(\mathbb{R}^{d})italic_L start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( blackboard_R start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT ). IEEE Transactions on Image Processing, 20(10):2705–2721, 2011. Vallières et al. 2015a M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. Data from: A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities, 2015a. Vallières et al. 2015b M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Phys. Med. Biol., 60(14):5471–5496, 2015b. van Griethuysen et al. 2017 J. J. M. van Griethuysen, A. Fedorov, C. Parmar, A. Hosny, N. Aucoin, V. Narayan, R. G. H. Beets-Tan, J.-C. Fillion-Robin, S. Pieper, and H. J. W. L. Aerts. Computational radiomics system to decode the radiographic phenotype. Cancer Res., 77(21):e104–e107, 2017. Weiler et al. 2018a M. Weiler, M. Geiger, M. Welling, W. Boomsma, and T. Cohen. 3D steerable CNNs: Learning rotationally equivariant features in volumetric data. In Advances in Neural Information Processing Systems, volume 2018-December, pages 10381–10392. Neural information processing systems foundation, 2018a. Weiler et al. 2018b M. Weiler, F. A. Hamprecht, and M. Storath. Learning Steerable Filters for Rotation Equivariant CNNs. CoRR, abs/1711.0, 2018b. Whybra et al. 2024 P. Whybra, A. Zwanenburg, V. Andrearczyk, R. Schaer, A. P. Apte, A. Ayotte, B. Baheti, S. Bakas, A. Bettinelli, R. Boellaard, L. Boldrini, I. Buvat, G. J. R. Cook, F. Dietsche, N. Dinapoli, H. S. Gabryś, V. Goh, M. Guckenberger, M. Hatt, M. Hosseinzadeh, A. Iyer, J. Lenkowicz, M. A. L. Loutfi, S. Löck, F. Marturano, O. Morin, C. Nioche, F. Orlhac, S. Pati, A. Rahmim, S. M. Rezaeijo, C. G. Rookyard, M. R. Salmanpour, A. Schindele, I. Shiri, E. Spezi, S. Tanadini-Lang, F. Tixier, T. Upadhaya, V. Valentini, J. J. M. van Griethuysen, F. Yousefirizi, H. Zaidi, H. Müller, M. Vallières, and A. Depeursinge. The image biomarker standardization initiative: Standardized convolutional filters for reproducible radiomics and enhanced clinical insights. Radiology, 310(2):e231319, 2024. Winkels and Cohen 2019 M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. M. Unser, N. Chenouard, and D. Van De Ville. Steerable Pyramids and Tight Wavelet Frames in L2(ℝd)subscript𝐿2superscriptℝ𝑑L_{2}(\mathbb{R}^{d})italic_L start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( blackboard_R start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT ). IEEE Transactions on Image Processing, 20(10):2705–2721, 2011. Vallières et al. 2015a M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. Data from: A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities, 2015a. Vallières et al. 2015b M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Phys. Med. Biol., 60(14):5471–5496, 2015b. van Griethuysen et al. 2017 J. J. M. van Griethuysen, A. Fedorov, C. Parmar, A. Hosny, N. Aucoin, V. Narayan, R. G. H. Beets-Tan, J.-C. Fillion-Robin, S. Pieper, and H. J. W. L. Aerts. Computational radiomics system to decode the radiographic phenotype. Cancer Res., 77(21):e104–e107, 2017. Weiler et al. 2018a M. Weiler, M. Geiger, M. Welling, W. Boomsma, and T. Cohen. 3D steerable CNNs: Learning rotationally equivariant features in volumetric data. In Advances in Neural Information Processing Systems, volume 2018-December, pages 10381–10392. Neural information processing systems foundation, 2018a. Weiler et al. 2018b M. Weiler, F. A. Hamprecht, and M. Storath. Learning Steerable Filters for Rotation Equivariant CNNs. CoRR, abs/1711.0, 2018b. Whybra et al. 2024 P. Whybra, A. Zwanenburg, V. Andrearczyk, R. Schaer, A. P. Apte, A. Ayotte, B. Baheti, S. Bakas, A. Bettinelli, R. Boellaard, L. Boldrini, I. Buvat, G. J. R. Cook, F. Dietsche, N. Dinapoli, H. S. Gabryś, V. Goh, M. Guckenberger, M. Hatt, M. Hosseinzadeh, A. Iyer, J. Lenkowicz, M. A. L. Loutfi, S. Löck, F. Marturano, O. Morin, C. Nioche, F. Orlhac, S. Pati, A. Rahmim, S. M. Rezaeijo, C. G. Rookyard, M. R. Salmanpour, A. Schindele, I. Shiri, E. Spezi, S. Tanadini-Lang, F. Tixier, T. Upadhaya, V. Valentini, J. J. M. van Griethuysen, F. Yousefirizi, H. Zaidi, H. Müller, M. Vallières, and A. Depeursinge. The image biomarker standardization initiative: Standardized convolutional filters for reproducible radiomics and enhanced clinical insights. Radiology, 310(2):e231319, 2024. Winkels and Cohen 2019 M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. Data from: A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities, 2015a. Vallières et al. 2015b M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Phys. Med. Biol., 60(14):5471–5496, 2015b. van Griethuysen et al. 2017 J. J. M. van Griethuysen, A. Fedorov, C. Parmar, A. Hosny, N. Aucoin, V. Narayan, R. G. H. Beets-Tan, J.-C. Fillion-Robin, S. Pieper, and H. J. W. L. Aerts. Computational radiomics system to decode the radiographic phenotype. Cancer Res., 77(21):e104–e107, 2017. Weiler et al. 2018a M. Weiler, M. Geiger, M. Welling, W. Boomsma, and T. Cohen. 3D steerable CNNs: Learning rotationally equivariant features in volumetric data. In Advances in Neural Information Processing Systems, volume 2018-December, pages 10381–10392. Neural information processing systems foundation, 2018a. Weiler et al. 2018b M. Weiler, F. A. Hamprecht, and M. Storath. Learning Steerable Filters for Rotation Equivariant CNNs. CoRR, abs/1711.0, 2018b. Whybra et al. 2024 P. Whybra, A. Zwanenburg, V. Andrearczyk, R. Schaer, A. P. Apte, A. Ayotte, B. Baheti, S. Bakas, A. Bettinelli, R. Boellaard, L. Boldrini, I. Buvat, G. J. R. Cook, F. Dietsche, N. Dinapoli, H. S. Gabryś, V. Goh, M. Guckenberger, M. Hatt, M. Hosseinzadeh, A. Iyer, J. Lenkowicz, M. A. L. Loutfi, S. Löck, F. Marturano, O. Morin, C. Nioche, F. Orlhac, S. Pati, A. Rahmim, S. M. Rezaeijo, C. G. Rookyard, M. R. Salmanpour, A. Schindele, I. Shiri, E. Spezi, S. Tanadini-Lang, F. Tixier, T. Upadhaya, V. Valentini, J. J. M. van Griethuysen, F. Yousefirizi, H. Zaidi, H. Müller, M. Vallières, and A. Depeursinge. The image biomarker standardization initiative: Standardized convolutional filters for reproducible radiomics and enhanced clinical insights. Radiology, 310(2):e231319, 2024. Winkels and Cohen 2019 M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Phys. Med. Biol., 60(14):5471–5496, 2015b. van Griethuysen et al. 2017 J. J. M. van Griethuysen, A. Fedorov, C. Parmar, A. Hosny, N. Aucoin, V. Narayan, R. G. H. Beets-Tan, J.-C. Fillion-Robin, S. Pieper, and H. J. W. L. Aerts. Computational radiomics system to decode the radiographic phenotype. Cancer Res., 77(21):e104–e107, 2017. Weiler et al. 2018a M. Weiler, M. Geiger, M. Welling, W. Boomsma, and T. Cohen. 3D steerable CNNs: Learning rotationally equivariant features in volumetric data. In Advances in Neural Information Processing Systems, volume 2018-December, pages 10381–10392. Neural information processing systems foundation, 2018a. Weiler et al. 2018b M. Weiler, F. A. Hamprecht, and M. Storath. Learning Steerable Filters for Rotation Equivariant CNNs. CoRR, abs/1711.0, 2018b. Whybra et al. 2024 P. Whybra, A. Zwanenburg, V. Andrearczyk, R. Schaer, A. P. Apte, A. Ayotte, B. Baheti, S. Bakas, A. Bettinelli, R. Boellaard, L. Boldrini, I. Buvat, G. J. R. Cook, F. Dietsche, N. Dinapoli, H. S. Gabryś, V. Goh, M. Guckenberger, M. Hatt, M. Hosseinzadeh, A. Iyer, J. Lenkowicz, M. A. L. Loutfi, S. Löck, F. Marturano, O. Morin, C. Nioche, F. Orlhac, S. Pati, A. Rahmim, S. M. Rezaeijo, C. G. Rookyard, M. R. Salmanpour, A. Schindele, I. Shiri, E. Spezi, S. Tanadini-Lang, F. Tixier, T. Upadhaya, V. Valentini, J. J. M. van Griethuysen, F. Yousefirizi, H. Zaidi, H. Müller, M. Vallières, and A. Depeursinge. The image biomarker standardization initiative: Standardized convolutional filters for reproducible radiomics and enhanced clinical insights. Radiology, 310(2):e231319, 2024. Winkels and Cohen 2019 M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. J. J. M. van Griethuysen, A. Fedorov, C. Parmar, A. Hosny, N. Aucoin, V. Narayan, R. G. H. Beets-Tan, J.-C. Fillion-Robin, S. Pieper, and H. J. W. L. Aerts. Computational radiomics system to decode the radiographic phenotype. Cancer Res., 77(21):e104–e107, 2017. Weiler et al. 2018a M. Weiler, M. Geiger, M. Welling, W. Boomsma, and T. Cohen. 3D steerable CNNs: Learning rotationally equivariant features in volumetric data. In Advances in Neural Information Processing Systems, volume 2018-December, pages 10381–10392. Neural information processing systems foundation, 2018a. Weiler et al. 2018b M. Weiler, F. A. Hamprecht, and M. Storath. Learning Steerable Filters for Rotation Equivariant CNNs. CoRR, abs/1711.0, 2018b. Whybra et al. 2024 P. Whybra, A. Zwanenburg, V. Andrearczyk, R. Schaer, A. P. Apte, A. Ayotte, B. Baheti, S. Bakas, A. Bettinelli, R. Boellaard, L. Boldrini, I. Buvat, G. J. R. Cook, F. Dietsche, N. Dinapoli, H. S. Gabryś, V. Goh, M. Guckenberger, M. Hatt, M. Hosseinzadeh, A. Iyer, J. Lenkowicz, M. A. L. Loutfi, S. Löck, F. Marturano, O. Morin, C. Nioche, F. Orlhac, S. Pati, A. Rahmim, S. M. Rezaeijo, C. G. Rookyard, M. R. Salmanpour, A. Schindele, I. Shiri, E. Spezi, S. Tanadini-Lang, F. Tixier, T. Upadhaya, V. Valentini, J. J. M. van Griethuysen, F. Yousefirizi, H. Zaidi, H. Müller, M. Vallières, and A. Depeursinge. The image biomarker standardization initiative: Standardized convolutional filters for reproducible radiomics and enhanced clinical insights. Radiology, 310(2):e231319, 2024. Winkels and Cohen 2019 M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. M. Weiler, M. Geiger, M. Welling, W. Boomsma, and T. Cohen. 3D steerable CNNs: Learning rotationally equivariant features in volumetric data. In Advances in Neural Information Processing Systems, volume 2018-December, pages 10381–10392. Neural information processing systems foundation, 2018a. Weiler et al. 2018b M. Weiler, F. A. Hamprecht, and M. Storath. Learning Steerable Filters for Rotation Equivariant CNNs. CoRR, abs/1711.0, 2018b. Whybra et al. 2024 P. Whybra, A. Zwanenburg, V. Andrearczyk, R. Schaer, A. P. Apte, A. Ayotte, B. Baheti, S. Bakas, A. Bettinelli, R. Boellaard, L. Boldrini, I. Buvat, G. J. R. Cook, F. Dietsche, N. Dinapoli, H. S. Gabryś, V. Goh, M. Guckenberger, M. Hatt, M. Hosseinzadeh, A. Iyer, J. Lenkowicz, M. A. L. Loutfi, S. Löck, F. Marturano, O. Morin, C. Nioche, F. Orlhac, S. Pati, A. Rahmim, S. M. Rezaeijo, C. G. Rookyard, M. R. Salmanpour, A. Schindele, I. Shiri, E. Spezi, S. Tanadini-Lang, F. Tixier, T. Upadhaya, V. Valentini, J. J. M. van Griethuysen, F. Yousefirizi, H. Zaidi, H. Müller, M. Vallières, and A. Depeursinge. The image biomarker standardization initiative: Standardized convolutional filters for reproducible radiomics and enhanced clinical insights. Radiology, 310(2):e231319, 2024. Winkels and Cohen 2019 M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. M. Weiler, F. A. Hamprecht, and M. Storath. Learning Steerable Filters for Rotation Equivariant CNNs. CoRR, abs/1711.0, 2018b. Whybra et al. 2024 P. Whybra, A. Zwanenburg, V. Andrearczyk, R. Schaer, A. P. Apte, A. Ayotte, B. Baheti, S. Bakas, A. Bettinelli, R. Boellaard, L. Boldrini, I. Buvat, G. J. R. Cook, F. Dietsche, N. Dinapoli, H. S. Gabryś, V. Goh, M. Guckenberger, M. Hatt, M. Hosseinzadeh, A. Iyer, J. Lenkowicz, M. A. L. Loutfi, S. Löck, F. Marturano, O. Morin, C. Nioche, F. Orlhac, S. Pati, A. Rahmim, S. M. Rezaeijo, C. G. Rookyard, M. R. Salmanpour, A. Schindele, I. Shiri, E. Spezi, S. Tanadini-Lang, F. Tixier, T. Upadhaya, V. Valentini, J. J. M. van Griethuysen, F. Yousefirizi, H. Zaidi, H. Müller, M. Vallières, and A. Depeursinge. The image biomarker standardization initiative: Standardized convolutional filters for reproducible radiomics and enhanced clinical insights. Radiology, 310(2):e231319, 2024. Winkels and Cohen 2019 M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. P. Whybra, A. Zwanenburg, V. Andrearczyk, R. Schaer, A. P. Apte, A. Ayotte, B. Baheti, S. Bakas, A. Bettinelli, R. Boellaard, L. Boldrini, I. Buvat, G. J. R. Cook, F. Dietsche, N. Dinapoli, H. S. Gabryś, V. Goh, M. Guckenberger, M. Hatt, M. Hosseinzadeh, A. Iyer, J. Lenkowicz, M. A. L. Loutfi, S. Löck, F. Marturano, O. Morin, C. Nioche, F. Orlhac, S. Pati, A. Rahmim, S. M. Rezaeijo, C. G. Rookyard, M. R. Salmanpour, A. Schindele, I. Shiri, E. Spezi, S. Tanadini-Lang, F. Tixier, T. Upadhaya, V. Valentini, J. J. M. van Griethuysen, F. Yousefirizi, H. Zaidi, H. Müller, M. Vallières, and A. Depeursinge. The image biomarker standardization initiative: Standardized convolutional filters for reproducible radiomics and enhanced clinical insights. Radiology, 310(2):e231319, 2024. Winkels and Cohen 2019 M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020.
- M. Unser. Image Processing I and II. Ecole polytechnique fédérale de Lausanne (EPFL), 2012. Unser and Van De Ville 2010 M. Unser and D. Van De Ville. Wavelet steerability and the higher-order Riesz transform. IEEE Transactions on Image Processing, 19(3):636–652, 2010. Unser et al. 2011 M. Unser, N. Chenouard, and D. Van De Ville. Steerable Pyramids and Tight Wavelet Frames in L2(ℝd)subscript𝐿2superscriptℝ𝑑L_{2}(\mathbb{R}^{d})italic_L start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( blackboard_R start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT ). IEEE Transactions on Image Processing, 20(10):2705–2721, 2011. Vallières et al. 2015a M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. Data from: A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities, 2015a. Vallières et al. 2015b M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Phys. Med. Biol., 60(14):5471–5496, 2015b. van Griethuysen et al. 2017 J. J. M. van Griethuysen, A. Fedorov, C. Parmar, A. Hosny, N. Aucoin, V. Narayan, R. G. H. Beets-Tan, J.-C. Fillion-Robin, S. Pieper, and H. J. W. L. Aerts. Computational radiomics system to decode the radiographic phenotype. Cancer Res., 77(21):e104–e107, 2017. Weiler et al. 2018a M. Weiler, M. Geiger, M. Welling, W. Boomsma, and T. Cohen. 3D steerable CNNs: Learning rotationally equivariant features in volumetric data. In Advances in Neural Information Processing Systems, volume 2018-December, pages 10381–10392. Neural information processing systems foundation, 2018a. Weiler et al. 2018b M. Weiler, F. A. Hamprecht, and M. Storath. Learning Steerable Filters for Rotation Equivariant CNNs. CoRR, abs/1711.0, 2018b. Whybra et al. 2024 P. Whybra, A. Zwanenburg, V. Andrearczyk, R. Schaer, A. P. Apte, A. Ayotte, B. Baheti, S. Bakas, A. Bettinelli, R. Boellaard, L. Boldrini, I. Buvat, G. J. R. Cook, F. Dietsche, N. Dinapoli, H. S. Gabryś, V. Goh, M. Guckenberger, M. Hatt, M. Hosseinzadeh, A. Iyer, J. Lenkowicz, M. A. L. Loutfi, S. Löck, F. Marturano, O. Morin, C. Nioche, F. Orlhac, S. Pati, A. Rahmim, S. M. Rezaeijo, C. G. Rookyard, M. R. Salmanpour, A. Schindele, I. Shiri, E. Spezi, S. Tanadini-Lang, F. Tixier, T. Upadhaya, V. Valentini, J. J. M. van Griethuysen, F. Yousefirizi, H. Zaidi, H. Müller, M. Vallières, and A. Depeursinge. The image biomarker standardization initiative: Standardized convolutional filters for reproducible radiomics and enhanced clinical insights. Radiology, 310(2):e231319, 2024. Winkels and Cohen 2019 M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. M. Unser and D. Van De Ville. Wavelet steerability and the higher-order Riesz transform. IEEE Transactions on Image Processing, 19(3):636–652, 2010. Unser et al. 2011 M. Unser, N. Chenouard, and D. Van De Ville. Steerable Pyramids and Tight Wavelet Frames in L2(ℝd)subscript𝐿2superscriptℝ𝑑L_{2}(\mathbb{R}^{d})italic_L start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( blackboard_R start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT ). IEEE Transactions on Image Processing, 20(10):2705–2721, 2011. Vallières et al. 2015a M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. Data from: A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities, 2015a. Vallières et al. 2015b M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Phys. Med. Biol., 60(14):5471–5496, 2015b. van Griethuysen et al. 2017 J. J. M. van Griethuysen, A. Fedorov, C. Parmar, A. Hosny, N. Aucoin, V. Narayan, R. G. H. Beets-Tan, J.-C. Fillion-Robin, S. Pieper, and H. J. W. L. Aerts. Computational radiomics system to decode the radiographic phenotype. Cancer Res., 77(21):e104–e107, 2017. Weiler et al. 2018a M. Weiler, M. Geiger, M. Welling, W. Boomsma, and T. Cohen. 3D steerable CNNs: Learning rotationally equivariant features in volumetric data. In Advances in Neural Information Processing Systems, volume 2018-December, pages 10381–10392. Neural information processing systems foundation, 2018a. Weiler et al. 2018b M. Weiler, F. A. Hamprecht, and M. Storath. Learning Steerable Filters for Rotation Equivariant CNNs. CoRR, abs/1711.0, 2018b. Whybra et al. 2024 P. Whybra, A. Zwanenburg, V. Andrearczyk, R. Schaer, A. P. Apte, A. Ayotte, B. Baheti, S. Bakas, A. Bettinelli, R. Boellaard, L. Boldrini, I. Buvat, G. J. R. Cook, F. Dietsche, N. Dinapoli, H. S. Gabryś, V. Goh, M. Guckenberger, M. Hatt, M. Hosseinzadeh, A. Iyer, J. Lenkowicz, M. A. L. Loutfi, S. Löck, F. Marturano, O. Morin, C. Nioche, F. Orlhac, S. Pati, A. Rahmim, S. M. Rezaeijo, C. G. Rookyard, M. R. Salmanpour, A. Schindele, I. Shiri, E. Spezi, S. Tanadini-Lang, F. Tixier, T. Upadhaya, V. Valentini, J. J. M. van Griethuysen, F. Yousefirizi, H. Zaidi, H. Müller, M. Vallières, and A. Depeursinge. The image biomarker standardization initiative: Standardized convolutional filters for reproducible radiomics and enhanced clinical insights. Radiology, 310(2):e231319, 2024. Winkels and Cohen 2019 M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. M. Unser, N. Chenouard, and D. Van De Ville. Steerable Pyramids and Tight Wavelet Frames in L2(ℝd)subscript𝐿2superscriptℝ𝑑L_{2}(\mathbb{R}^{d})italic_L start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( blackboard_R start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT ). IEEE Transactions on Image Processing, 20(10):2705–2721, 2011. Vallières et al. 2015a M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. Data from: A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities, 2015a. Vallières et al. 2015b M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Phys. Med. Biol., 60(14):5471–5496, 2015b. van Griethuysen et al. 2017 J. J. M. van Griethuysen, A. Fedorov, C. Parmar, A. Hosny, N. Aucoin, V. Narayan, R. G. H. Beets-Tan, J.-C. Fillion-Robin, S. Pieper, and H. J. W. L. Aerts. Computational radiomics system to decode the radiographic phenotype. Cancer Res., 77(21):e104–e107, 2017. Weiler et al. 2018a M. Weiler, M. Geiger, M. Welling, W. Boomsma, and T. Cohen. 3D steerable CNNs: Learning rotationally equivariant features in volumetric data. In Advances in Neural Information Processing Systems, volume 2018-December, pages 10381–10392. Neural information processing systems foundation, 2018a. Weiler et al. 2018b M. Weiler, F. A. Hamprecht, and M. Storath. Learning Steerable Filters for Rotation Equivariant CNNs. CoRR, abs/1711.0, 2018b. Whybra et al. 2024 P. Whybra, A. Zwanenburg, V. Andrearczyk, R. Schaer, A. P. Apte, A. Ayotte, B. Baheti, S. Bakas, A. Bettinelli, R. Boellaard, L. Boldrini, I. Buvat, G. J. R. Cook, F. Dietsche, N. Dinapoli, H. S. Gabryś, V. Goh, M. Guckenberger, M. Hatt, M. Hosseinzadeh, A. Iyer, J. Lenkowicz, M. A. L. Loutfi, S. Löck, F. Marturano, O. Morin, C. Nioche, F. Orlhac, S. Pati, A. Rahmim, S. M. Rezaeijo, C. G. Rookyard, M. R. Salmanpour, A. Schindele, I. Shiri, E. Spezi, S. Tanadini-Lang, F. Tixier, T. Upadhaya, V. Valentini, J. J. M. van Griethuysen, F. Yousefirizi, H. Zaidi, H. Müller, M. Vallières, and A. Depeursinge. The image biomarker standardization initiative: Standardized convolutional filters for reproducible radiomics and enhanced clinical insights. Radiology, 310(2):e231319, 2024. Winkels and Cohen 2019 M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. Data from: A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities, 2015a. Vallières et al. 2015b M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Phys. Med. Biol., 60(14):5471–5496, 2015b. van Griethuysen et al. 2017 J. J. M. van Griethuysen, A. Fedorov, C. Parmar, A. Hosny, N. Aucoin, V. Narayan, R. G. H. Beets-Tan, J.-C. Fillion-Robin, S. Pieper, and H. J. W. L. Aerts. Computational radiomics system to decode the radiographic phenotype. Cancer Res., 77(21):e104–e107, 2017. Weiler et al. 2018a M. Weiler, M. Geiger, M. Welling, W. Boomsma, and T. Cohen. 3D steerable CNNs: Learning rotationally equivariant features in volumetric data. In Advances in Neural Information Processing Systems, volume 2018-December, pages 10381–10392. Neural information processing systems foundation, 2018a. Weiler et al. 2018b M. Weiler, F. A. Hamprecht, and M. Storath. Learning Steerable Filters for Rotation Equivariant CNNs. CoRR, abs/1711.0, 2018b. Whybra et al. 2024 P. Whybra, A. Zwanenburg, V. Andrearczyk, R. Schaer, A. P. Apte, A. Ayotte, B. Baheti, S. Bakas, A. Bettinelli, R. Boellaard, L. Boldrini, I. Buvat, G. J. R. Cook, F. Dietsche, N. Dinapoli, H. S. Gabryś, V. Goh, M. Guckenberger, M. Hatt, M. Hosseinzadeh, A. Iyer, J. Lenkowicz, M. A. L. Loutfi, S. Löck, F. Marturano, O. Morin, C. Nioche, F. Orlhac, S. Pati, A. Rahmim, S. M. Rezaeijo, C. G. Rookyard, M. R. Salmanpour, A. Schindele, I. Shiri, E. Spezi, S. Tanadini-Lang, F. Tixier, T. Upadhaya, V. Valentini, J. J. M. van Griethuysen, F. Yousefirizi, H. Zaidi, H. Müller, M. Vallières, and A. Depeursinge. The image biomarker standardization initiative: Standardized convolutional filters for reproducible radiomics and enhanced clinical insights. Radiology, 310(2):e231319, 2024. Winkels and Cohen 2019 M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Phys. Med. Biol., 60(14):5471–5496, 2015b. van Griethuysen et al. 2017 J. J. M. van Griethuysen, A. Fedorov, C. Parmar, A. Hosny, N. Aucoin, V. Narayan, R. G. H. Beets-Tan, J.-C. Fillion-Robin, S. Pieper, and H. J. W. L. Aerts. Computational radiomics system to decode the radiographic phenotype. Cancer Res., 77(21):e104–e107, 2017. Weiler et al. 2018a M. Weiler, M. Geiger, M. Welling, W. Boomsma, and T. Cohen. 3D steerable CNNs: Learning rotationally equivariant features in volumetric data. In Advances in Neural Information Processing Systems, volume 2018-December, pages 10381–10392. Neural information processing systems foundation, 2018a. Weiler et al. 2018b M. Weiler, F. A. Hamprecht, and M. Storath. Learning Steerable Filters for Rotation Equivariant CNNs. CoRR, abs/1711.0, 2018b. Whybra et al. 2024 P. Whybra, A. Zwanenburg, V. Andrearczyk, R. Schaer, A. P. Apte, A. Ayotte, B. Baheti, S. Bakas, A. Bettinelli, R. Boellaard, L. Boldrini, I. Buvat, G. J. R. Cook, F. Dietsche, N. Dinapoli, H. S. Gabryś, V. Goh, M. Guckenberger, M. Hatt, M. Hosseinzadeh, A. Iyer, J. Lenkowicz, M. A. L. Loutfi, S. Löck, F. Marturano, O. Morin, C. Nioche, F. Orlhac, S. Pati, A. Rahmim, S. M. Rezaeijo, C. G. Rookyard, M. R. Salmanpour, A. Schindele, I. Shiri, E. Spezi, S. Tanadini-Lang, F. Tixier, T. Upadhaya, V. Valentini, J. J. M. van Griethuysen, F. Yousefirizi, H. Zaidi, H. Müller, M. Vallières, and A. Depeursinge. The image biomarker standardization initiative: Standardized convolutional filters for reproducible radiomics and enhanced clinical insights. Radiology, 310(2):e231319, 2024. Winkels and Cohen 2019 M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. J. J. M. van Griethuysen, A. Fedorov, C. Parmar, A. Hosny, N. Aucoin, V. Narayan, R. G. H. Beets-Tan, J.-C. Fillion-Robin, S. Pieper, and H. J. W. L. Aerts. Computational radiomics system to decode the radiographic phenotype. Cancer Res., 77(21):e104–e107, 2017. Weiler et al. 2018a M. Weiler, M. Geiger, M. Welling, W. Boomsma, and T. Cohen. 3D steerable CNNs: Learning rotationally equivariant features in volumetric data. In Advances in Neural Information Processing Systems, volume 2018-December, pages 10381–10392. Neural information processing systems foundation, 2018a. Weiler et al. 2018b M. Weiler, F. A. Hamprecht, and M. Storath. Learning Steerable Filters for Rotation Equivariant CNNs. CoRR, abs/1711.0, 2018b. Whybra et al. 2024 P. Whybra, A. Zwanenburg, V. Andrearczyk, R. Schaer, A. P. Apte, A. Ayotte, B. Baheti, S. Bakas, A. Bettinelli, R. Boellaard, L. Boldrini, I. Buvat, G. J. R. Cook, F. Dietsche, N. Dinapoli, H. S. Gabryś, V. Goh, M. Guckenberger, M. Hatt, M. Hosseinzadeh, A. Iyer, J. Lenkowicz, M. A. L. Loutfi, S. Löck, F. Marturano, O. Morin, C. Nioche, F. Orlhac, S. Pati, A. Rahmim, S. M. Rezaeijo, C. G. Rookyard, M. R. Salmanpour, A. Schindele, I. Shiri, E. Spezi, S. Tanadini-Lang, F. Tixier, T. Upadhaya, V. Valentini, J. J. M. van Griethuysen, F. Yousefirizi, H. Zaidi, H. Müller, M. Vallières, and A. Depeursinge. The image biomarker standardization initiative: Standardized convolutional filters for reproducible radiomics and enhanced clinical insights. Radiology, 310(2):e231319, 2024. Winkels and Cohen 2019 M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. M. Weiler, M. Geiger, M. Welling, W. Boomsma, and T. Cohen. 3D steerable CNNs: Learning rotationally equivariant features in volumetric data. In Advances in Neural Information Processing Systems, volume 2018-December, pages 10381–10392. Neural information processing systems foundation, 2018a. Weiler et al. 2018b M. Weiler, F. A. Hamprecht, and M. Storath. Learning Steerable Filters for Rotation Equivariant CNNs. CoRR, abs/1711.0, 2018b. Whybra et al. 2024 P. Whybra, A. Zwanenburg, V. Andrearczyk, R. Schaer, A. P. Apte, A. Ayotte, B. Baheti, S. Bakas, A. Bettinelli, R. Boellaard, L. Boldrini, I. Buvat, G. J. R. Cook, F. Dietsche, N. Dinapoli, H. S. Gabryś, V. Goh, M. Guckenberger, M. Hatt, M. Hosseinzadeh, A. Iyer, J. Lenkowicz, M. A. L. Loutfi, S. Löck, F. Marturano, O. Morin, C. Nioche, F. Orlhac, S. Pati, A. Rahmim, S. M. Rezaeijo, C. G. Rookyard, M. R. Salmanpour, A. Schindele, I. Shiri, E. Spezi, S. Tanadini-Lang, F. Tixier, T. Upadhaya, V. Valentini, J. J. M. van Griethuysen, F. Yousefirizi, H. Zaidi, H. Müller, M. Vallières, and A. Depeursinge. The image biomarker standardization initiative: Standardized convolutional filters for reproducible radiomics and enhanced clinical insights. Radiology, 310(2):e231319, 2024. Winkels and Cohen 2019 M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. M. Weiler, F. A. Hamprecht, and M. Storath. Learning Steerable Filters for Rotation Equivariant CNNs. CoRR, abs/1711.0, 2018b. Whybra et al. 2024 P. Whybra, A. Zwanenburg, V. Andrearczyk, R. Schaer, A. P. Apte, A. Ayotte, B. Baheti, S. Bakas, A. Bettinelli, R. Boellaard, L. Boldrini, I. Buvat, G. J. R. Cook, F. Dietsche, N. Dinapoli, H. S. Gabryś, V. Goh, M. Guckenberger, M. Hatt, M. Hosseinzadeh, A. Iyer, J. Lenkowicz, M. A. L. Loutfi, S. Löck, F. Marturano, O. Morin, C. Nioche, F. Orlhac, S. Pati, A. Rahmim, S. M. Rezaeijo, C. G. Rookyard, M. R. Salmanpour, A. Schindele, I. Shiri, E. Spezi, S. Tanadini-Lang, F. Tixier, T. Upadhaya, V. Valentini, J. J. M. van Griethuysen, F. Yousefirizi, H. Zaidi, H. Müller, M. Vallières, and A. Depeursinge. The image biomarker standardization initiative: Standardized convolutional filters for reproducible radiomics and enhanced clinical insights. Radiology, 310(2):e231319, 2024. Winkels and Cohen 2019 M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. P. Whybra, A. Zwanenburg, V. Andrearczyk, R. Schaer, A. P. Apte, A. Ayotte, B. Baheti, S. Bakas, A. Bettinelli, R. Boellaard, L. Boldrini, I. Buvat, G. J. R. Cook, F. Dietsche, N. Dinapoli, H. S. Gabryś, V. Goh, M. Guckenberger, M. Hatt, M. Hosseinzadeh, A. Iyer, J. Lenkowicz, M. A. L. Loutfi, S. Löck, F. Marturano, O. Morin, C. Nioche, F. Orlhac, S. Pati, A. Rahmim, S. M. Rezaeijo, C. G. Rookyard, M. R. Salmanpour, A. Schindele, I. Shiri, E. Spezi, S. Tanadini-Lang, F. Tixier, T. Upadhaya, V. Valentini, J. J. M. van Griethuysen, F. Yousefirizi, H. Zaidi, H. Müller, M. Vallières, and A. Depeursinge. The image biomarker standardization initiative: Standardized convolutional filters for reproducible radiomics and enhanced clinical insights. Radiology, 310(2):e231319, 2024. Winkels and Cohen 2019 M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020.
- Wavelet steerability and the higher-order Riesz transform. IEEE Transactions on Image Processing, 19(3):636–652, 2010. Unser et al. 2011 M. Unser, N. Chenouard, and D. Van De Ville. Steerable Pyramids and Tight Wavelet Frames in L2(ℝd)subscript𝐿2superscriptℝ𝑑L_{2}(\mathbb{R}^{d})italic_L start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( blackboard_R start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT ). IEEE Transactions on Image Processing, 20(10):2705–2721, 2011. Vallières et al. 2015a M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. Data from: A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities, 2015a. Vallières et al. 2015b M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Phys. Med. Biol., 60(14):5471–5496, 2015b. van Griethuysen et al. 2017 J. J. M. van Griethuysen, A. Fedorov, C. Parmar, A. Hosny, N. Aucoin, V. Narayan, R. G. H. Beets-Tan, J.-C. Fillion-Robin, S. Pieper, and H. J. W. L. Aerts. Computational radiomics system to decode the radiographic phenotype. Cancer Res., 77(21):e104–e107, 2017. Weiler et al. 2018a M. Weiler, M. Geiger, M. Welling, W. Boomsma, and T. Cohen. 3D steerable CNNs: Learning rotationally equivariant features in volumetric data. In Advances in Neural Information Processing Systems, volume 2018-December, pages 10381–10392. Neural information processing systems foundation, 2018a. Weiler et al. 2018b M. Weiler, F. A. Hamprecht, and M. Storath. Learning Steerable Filters for Rotation Equivariant CNNs. CoRR, abs/1711.0, 2018b. Whybra et al. 2024 P. Whybra, A. Zwanenburg, V. Andrearczyk, R. Schaer, A. P. Apte, A. Ayotte, B. Baheti, S. Bakas, A. Bettinelli, R. Boellaard, L. Boldrini, I. Buvat, G. J. R. Cook, F. Dietsche, N. Dinapoli, H. S. Gabryś, V. Goh, M. Guckenberger, M. Hatt, M. Hosseinzadeh, A. Iyer, J. Lenkowicz, M. A. L. Loutfi, S. Löck, F. Marturano, O. Morin, C. Nioche, F. Orlhac, S. Pati, A. Rahmim, S. M. Rezaeijo, C. G. Rookyard, M. R. Salmanpour, A. Schindele, I. Shiri, E. Spezi, S. Tanadini-Lang, F. Tixier, T. Upadhaya, V. Valentini, J. J. M. van Griethuysen, F. Yousefirizi, H. Zaidi, H. Müller, M. Vallières, and A. Depeursinge. The image biomarker standardization initiative: Standardized convolutional filters for reproducible radiomics and enhanced clinical insights. Radiology, 310(2):e231319, 2024. Winkels and Cohen 2019 M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. M. Unser, N. Chenouard, and D. Van De Ville. Steerable Pyramids and Tight Wavelet Frames in L2(ℝd)subscript𝐿2superscriptℝ𝑑L_{2}(\mathbb{R}^{d})italic_L start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( blackboard_R start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT ). IEEE Transactions on Image Processing, 20(10):2705–2721, 2011. Vallières et al. 2015a M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. Data from: A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities, 2015a. Vallières et al. 2015b M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Phys. Med. Biol., 60(14):5471–5496, 2015b. van Griethuysen et al. 2017 J. J. M. van Griethuysen, A. Fedorov, C. Parmar, A. Hosny, N. Aucoin, V. Narayan, R. G. H. Beets-Tan, J.-C. Fillion-Robin, S. Pieper, and H. J. W. L. Aerts. Computational radiomics system to decode the radiographic phenotype. Cancer Res., 77(21):e104–e107, 2017. Weiler et al. 2018a M. Weiler, M. Geiger, M. Welling, W. Boomsma, and T. Cohen. 3D steerable CNNs: Learning rotationally equivariant features in volumetric data. In Advances in Neural Information Processing Systems, volume 2018-December, pages 10381–10392. Neural information processing systems foundation, 2018a. Weiler et al. 2018b M. Weiler, F. A. Hamprecht, and M. Storath. Learning Steerable Filters for Rotation Equivariant CNNs. CoRR, abs/1711.0, 2018b. Whybra et al. 2024 P. Whybra, A. Zwanenburg, V. Andrearczyk, R. Schaer, A. P. Apte, A. Ayotte, B. Baheti, S. Bakas, A. Bettinelli, R. Boellaard, L. Boldrini, I. Buvat, G. J. R. Cook, F. Dietsche, N. Dinapoli, H. S. Gabryś, V. Goh, M. Guckenberger, M. Hatt, M. Hosseinzadeh, A. Iyer, J. Lenkowicz, M. A. L. Loutfi, S. Löck, F. Marturano, O. Morin, C. Nioche, F. Orlhac, S. Pati, A. Rahmim, S. M. Rezaeijo, C. G. Rookyard, M. R. Salmanpour, A. Schindele, I. Shiri, E. Spezi, S. Tanadini-Lang, F. Tixier, T. Upadhaya, V. Valentini, J. J. M. van Griethuysen, F. Yousefirizi, H. Zaidi, H. Müller, M. Vallières, and A. Depeursinge. The image biomarker standardization initiative: Standardized convolutional filters for reproducible radiomics and enhanced clinical insights. Radiology, 310(2):e231319, 2024. Winkels and Cohen 2019 M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. Data from: A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities, 2015a. Vallières et al. 2015b M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Phys. Med. Biol., 60(14):5471–5496, 2015b. van Griethuysen et al. 2017 J. J. M. van Griethuysen, A. Fedorov, C. Parmar, A. Hosny, N. Aucoin, V. Narayan, R. G. H. Beets-Tan, J.-C. Fillion-Robin, S. Pieper, and H. J. W. L. Aerts. Computational radiomics system to decode the radiographic phenotype. Cancer Res., 77(21):e104–e107, 2017. Weiler et al. 2018a M. Weiler, M. Geiger, M. Welling, W. Boomsma, and T. Cohen. 3D steerable CNNs: Learning rotationally equivariant features in volumetric data. In Advances in Neural Information Processing Systems, volume 2018-December, pages 10381–10392. Neural information processing systems foundation, 2018a. Weiler et al. 2018b M. Weiler, F. A. Hamprecht, and M. Storath. Learning Steerable Filters for Rotation Equivariant CNNs. CoRR, abs/1711.0, 2018b. Whybra et al. 2024 P. Whybra, A. Zwanenburg, V. Andrearczyk, R. Schaer, A. P. Apte, A. Ayotte, B. Baheti, S. Bakas, A. Bettinelli, R. Boellaard, L. Boldrini, I. Buvat, G. J. R. Cook, F. Dietsche, N. Dinapoli, H. S. Gabryś, V. Goh, M. Guckenberger, M. Hatt, M. Hosseinzadeh, A. Iyer, J. Lenkowicz, M. A. L. Loutfi, S. Löck, F. Marturano, O. Morin, C. Nioche, F. Orlhac, S. Pati, A. Rahmim, S. M. Rezaeijo, C. G. Rookyard, M. R. Salmanpour, A. Schindele, I. Shiri, E. Spezi, S. Tanadini-Lang, F. Tixier, T. Upadhaya, V. Valentini, J. J. M. van Griethuysen, F. Yousefirizi, H. Zaidi, H. Müller, M. Vallières, and A. Depeursinge. The image biomarker standardization initiative: Standardized convolutional filters for reproducible radiomics and enhanced clinical insights. Radiology, 310(2):e231319, 2024. Winkels and Cohen 2019 M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Phys. Med. Biol., 60(14):5471–5496, 2015b. van Griethuysen et al. 2017 J. J. M. van Griethuysen, A. Fedorov, C. Parmar, A. Hosny, N. Aucoin, V. Narayan, R. G. H. Beets-Tan, J.-C. Fillion-Robin, S. Pieper, and H. J. W. L. Aerts. Computational radiomics system to decode the radiographic phenotype. Cancer Res., 77(21):e104–e107, 2017. Weiler et al. 2018a M. Weiler, M. Geiger, M. Welling, W. Boomsma, and T. Cohen. 3D steerable CNNs: Learning rotationally equivariant features in volumetric data. In Advances in Neural Information Processing Systems, volume 2018-December, pages 10381–10392. Neural information processing systems foundation, 2018a. Weiler et al. 2018b M. Weiler, F. A. Hamprecht, and M. Storath. Learning Steerable Filters for Rotation Equivariant CNNs. CoRR, abs/1711.0, 2018b. Whybra et al. 2024 P. Whybra, A. Zwanenburg, V. Andrearczyk, R. Schaer, A. P. Apte, A. Ayotte, B. Baheti, S. Bakas, A. Bettinelli, R. Boellaard, L. Boldrini, I. Buvat, G. J. R. Cook, F. Dietsche, N. Dinapoli, H. S. Gabryś, V. Goh, M. Guckenberger, M. Hatt, M. Hosseinzadeh, A. Iyer, J. Lenkowicz, M. A. L. Loutfi, S. Löck, F. Marturano, O. Morin, C. Nioche, F. Orlhac, S. Pati, A. Rahmim, S. M. Rezaeijo, C. G. Rookyard, M. R. Salmanpour, A. Schindele, I. Shiri, E. Spezi, S. Tanadini-Lang, F. Tixier, T. Upadhaya, V. Valentini, J. J. M. van Griethuysen, F. Yousefirizi, H. Zaidi, H. Müller, M. Vallières, and A. Depeursinge. The image biomarker standardization initiative: Standardized convolutional filters for reproducible radiomics and enhanced clinical insights. Radiology, 310(2):e231319, 2024. Winkels and Cohen 2019 M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. J. J. M. van Griethuysen, A. Fedorov, C. Parmar, A. Hosny, N. Aucoin, V. Narayan, R. G. H. Beets-Tan, J.-C. Fillion-Robin, S. Pieper, and H. J. W. L. Aerts. Computational radiomics system to decode the radiographic phenotype. Cancer Res., 77(21):e104–e107, 2017. Weiler et al. 2018a M. Weiler, M. Geiger, M. Welling, W. Boomsma, and T. Cohen. 3D steerable CNNs: Learning rotationally equivariant features in volumetric data. In Advances in Neural Information Processing Systems, volume 2018-December, pages 10381–10392. Neural information processing systems foundation, 2018a. Weiler et al. 2018b M. Weiler, F. A. Hamprecht, and M. Storath. Learning Steerable Filters for Rotation Equivariant CNNs. CoRR, abs/1711.0, 2018b. Whybra et al. 2024 P. Whybra, A. Zwanenburg, V. Andrearczyk, R. Schaer, A. P. Apte, A. Ayotte, B. Baheti, S. Bakas, A. Bettinelli, R. Boellaard, L. Boldrini, I. Buvat, G. J. R. Cook, F. Dietsche, N. Dinapoli, H. S. Gabryś, V. Goh, M. Guckenberger, M. Hatt, M. Hosseinzadeh, A. Iyer, J. Lenkowicz, M. A. L. Loutfi, S. Löck, F. Marturano, O. Morin, C. Nioche, F. Orlhac, S. Pati, A. Rahmim, S. M. Rezaeijo, C. G. Rookyard, M. R. Salmanpour, A. Schindele, I. Shiri, E. Spezi, S. Tanadini-Lang, F. Tixier, T. Upadhaya, V. Valentini, J. J. M. van Griethuysen, F. Yousefirizi, H. Zaidi, H. Müller, M. Vallières, and A. Depeursinge. The image biomarker standardization initiative: Standardized convolutional filters for reproducible radiomics and enhanced clinical insights. Radiology, 310(2):e231319, 2024. Winkels and Cohen 2019 M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. M. Weiler, M. Geiger, M. Welling, W. Boomsma, and T. Cohen. 3D steerable CNNs: Learning rotationally equivariant features in volumetric data. In Advances in Neural Information Processing Systems, volume 2018-December, pages 10381–10392. Neural information processing systems foundation, 2018a. Weiler et al. 2018b M. Weiler, F. A. Hamprecht, and M. Storath. Learning Steerable Filters for Rotation Equivariant CNNs. CoRR, abs/1711.0, 2018b. Whybra et al. 2024 P. Whybra, A. Zwanenburg, V. Andrearczyk, R. Schaer, A. P. Apte, A. Ayotte, B. Baheti, S. Bakas, A. Bettinelli, R. Boellaard, L. Boldrini, I. Buvat, G. J. R. Cook, F. Dietsche, N. Dinapoli, H. S. Gabryś, V. Goh, M. Guckenberger, M. Hatt, M. Hosseinzadeh, A. Iyer, J. Lenkowicz, M. A. L. Loutfi, S. Löck, F. Marturano, O. Morin, C. Nioche, F. Orlhac, S. Pati, A. Rahmim, S. M. Rezaeijo, C. G. Rookyard, M. R. Salmanpour, A. Schindele, I. Shiri, E. Spezi, S. Tanadini-Lang, F. Tixier, T. Upadhaya, V. Valentini, J. J. M. van Griethuysen, F. Yousefirizi, H. Zaidi, H. Müller, M. Vallières, and A. Depeursinge. The image biomarker standardization initiative: Standardized convolutional filters for reproducible radiomics and enhanced clinical insights. Radiology, 310(2):e231319, 2024. Winkels and Cohen 2019 M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. M. Weiler, F. A. Hamprecht, and M. Storath. Learning Steerable Filters for Rotation Equivariant CNNs. CoRR, abs/1711.0, 2018b. Whybra et al. 2024 P. Whybra, A. Zwanenburg, V. Andrearczyk, R. Schaer, A. P. Apte, A. Ayotte, B. Baheti, S. Bakas, A. Bettinelli, R. Boellaard, L. Boldrini, I. Buvat, G. J. R. Cook, F. Dietsche, N. Dinapoli, H. S. Gabryś, V. Goh, M. Guckenberger, M. Hatt, M. Hosseinzadeh, A. Iyer, J. Lenkowicz, M. A. L. Loutfi, S. Löck, F. Marturano, O. Morin, C. Nioche, F. Orlhac, S. Pati, A. Rahmim, S. M. Rezaeijo, C. G. Rookyard, M. R. Salmanpour, A. Schindele, I. Shiri, E. Spezi, S. Tanadini-Lang, F. Tixier, T. Upadhaya, V. Valentini, J. J. M. van Griethuysen, F. Yousefirizi, H. Zaidi, H. Müller, M. Vallières, and A. Depeursinge. The image biomarker standardization initiative: Standardized convolutional filters for reproducible radiomics and enhanced clinical insights. Radiology, 310(2):e231319, 2024. Winkels and Cohen 2019 M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. P. Whybra, A. Zwanenburg, V. Andrearczyk, R. Schaer, A. P. Apte, A. Ayotte, B. Baheti, S. Bakas, A. Bettinelli, R. Boellaard, L. Boldrini, I. Buvat, G. J. R. Cook, F. Dietsche, N. Dinapoli, H. S. Gabryś, V. Goh, M. Guckenberger, M. Hatt, M. Hosseinzadeh, A. Iyer, J. Lenkowicz, M. A. L. Loutfi, S. Löck, F. Marturano, O. Morin, C. Nioche, F. Orlhac, S. Pati, A. Rahmim, S. M. Rezaeijo, C. G. Rookyard, M. R. Salmanpour, A. Schindele, I. Shiri, E. Spezi, S. Tanadini-Lang, F. Tixier, T. Upadhaya, V. Valentini, J. J. M. van Griethuysen, F. Yousefirizi, H. Zaidi, H. Müller, M. Vallières, and A. Depeursinge. The image biomarker standardization initiative: Standardized convolutional filters for reproducible radiomics and enhanced clinical insights. Radiology, 310(2):e231319, 2024. Winkels and Cohen 2019 M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020.
- Steerable Pyramids and Tight Wavelet Frames in L2(ℝd)subscript𝐿2superscriptℝ𝑑L_{2}(\mathbb{R}^{d})italic_L start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( blackboard_R start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT ). IEEE Transactions on Image Processing, 20(10):2705–2721, 2011. Vallières et al. 2015a M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. Data from: A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities, 2015a. Vallières et al. 2015b M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Phys. Med. Biol., 60(14):5471–5496, 2015b. van Griethuysen et al. 2017 J. J. M. van Griethuysen, A. Fedorov, C. Parmar, A. Hosny, N. Aucoin, V. Narayan, R. G. H. Beets-Tan, J.-C. Fillion-Robin, S. Pieper, and H. J. W. L. Aerts. Computational radiomics system to decode the radiographic phenotype. Cancer Res., 77(21):e104–e107, 2017. Weiler et al. 2018a M. Weiler, M. Geiger, M. Welling, W. Boomsma, and T. Cohen. 3D steerable CNNs: Learning rotationally equivariant features in volumetric data. In Advances in Neural Information Processing Systems, volume 2018-December, pages 10381–10392. Neural information processing systems foundation, 2018a. Weiler et al. 2018b M. Weiler, F. A. Hamprecht, and M. Storath. Learning Steerable Filters for Rotation Equivariant CNNs. CoRR, abs/1711.0, 2018b. Whybra et al. 2024 P. Whybra, A. Zwanenburg, V. Andrearczyk, R. Schaer, A. P. Apte, A. Ayotte, B. Baheti, S. Bakas, A. Bettinelli, R. Boellaard, L. Boldrini, I. Buvat, G. J. R. Cook, F. Dietsche, N. Dinapoli, H. S. Gabryś, V. Goh, M. Guckenberger, M. Hatt, M. Hosseinzadeh, A. Iyer, J. Lenkowicz, M. A. L. Loutfi, S. Löck, F. Marturano, O. Morin, C. Nioche, F. Orlhac, S. Pati, A. Rahmim, S. M. Rezaeijo, C. G. Rookyard, M. R. Salmanpour, A. Schindele, I. Shiri, E. Spezi, S. Tanadini-Lang, F. Tixier, T. Upadhaya, V. Valentini, J. J. M. van Griethuysen, F. Yousefirizi, H. Zaidi, H. Müller, M. Vallières, and A. Depeursinge. The image biomarker standardization initiative: Standardized convolutional filters for reproducible radiomics and enhanced clinical insights. Radiology, 310(2):e231319, 2024. Winkels and Cohen 2019 M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. Data from: A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities, 2015a. Vallières et al. 2015b M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Phys. Med. Biol., 60(14):5471–5496, 2015b. van Griethuysen et al. 2017 J. J. M. van Griethuysen, A. Fedorov, C. Parmar, A. Hosny, N. Aucoin, V. Narayan, R. G. H. Beets-Tan, J.-C. Fillion-Robin, S. Pieper, and H. J. W. L. Aerts. Computational radiomics system to decode the radiographic phenotype. Cancer Res., 77(21):e104–e107, 2017. Weiler et al. 2018a M. Weiler, M. Geiger, M. Welling, W. Boomsma, and T. Cohen. 3D steerable CNNs: Learning rotationally equivariant features in volumetric data. In Advances in Neural Information Processing Systems, volume 2018-December, pages 10381–10392. Neural information processing systems foundation, 2018a. Weiler et al. 2018b M. Weiler, F. A. Hamprecht, and M. Storath. Learning Steerable Filters for Rotation Equivariant CNNs. CoRR, abs/1711.0, 2018b. Whybra et al. 2024 P. Whybra, A. Zwanenburg, V. Andrearczyk, R. Schaer, A. P. Apte, A. Ayotte, B. Baheti, S. Bakas, A. Bettinelli, R. Boellaard, L. Boldrini, I. Buvat, G. J. R. Cook, F. Dietsche, N. Dinapoli, H. S. Gabryś, V. Goh, M. Guckenberger, M. Hatt, M. Hosseinzadeh, A. Iyer, J. Lenkowicz, M. A. L. Loutfi, S. Löck, F. Marturano, O. Morin, C. Nioche, F. Orlhac, S. Pati, A. Rahmim, S. M. Rezaeijo, C. G. Rookyard, M. R. Salmanpour, A. Schindele, I. Shiri, E. Spezi, S. Tanadini-Lang, F. Tixier, T. Upadhaya, V. Valentini, J. J. M. van Griethuysen, F. Yousefirizi, H. Zaidi, H. Müller, M. Vallières, and A. Depeursinge. The image biomarker standardization initiative: Standardized convolutional filters for reproducible radiomics and enhanced clinical insights. Radiology, 310(2):e231319, 2024. Winkels and Cohen 2019 M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Phys. Med. Biol., 60(14):5471–5496, 2015b. van Griethuysen et al. 2017 J. J. M. van Griethuysen, A. Fedorov, C. Parmar, A. Hosny, N. Aucoin, V. Narayan, R. G. H. Beets-Tan, J.-C. Fillion-Robin, S. Pieper, and H. J. W. L. Aerts. Computational radiomics system to decode the radiographic phenotype. Cancer Res., 77(21):e104–e107, 2017. Weiler et al. 2018a M. Weiler, M. Geiger, M. Welling, W. Boomsma, and T. Cohen. 3D steerable CNNs: Learning rotationally equivariant features in volumetric data. In Advances in Neural Information Processing Systems, volume 2018-December, pages 10381–10392. Neural information processing systems foundation, 2018a. Weiler et al. 2018b M. Weiler, F. A. Hamprecht, and M. Storath. Learning Steerable Filters for Rotation Equivariant CNNs. CoRR, abs/1711.0, 2018b. Whybra et al. 2024 P. Whybra, A. Zwanenburg, V. Andrearczyk, R. Schaer, A. P. Apte, A. Ayotte, B. Baheti, S. Bakas, A. Bettinelli, R. Boellaard, L. Boldrini, I. Buvat, G. J. R. Cook, F. Dietsche, N. Dinapoli, H. S. Gabryś, V. Goh, M. Guckenberger, M. Hatt, M. Hosseinzadeh, A. Iyer, J. Lenkowicz, M. A. L. Loutfi, S. Löck, F. Marturano, O. Morin, C. Nioche, F. Orlhac, S. Pati, A. Rahmim, S. M. Rezaeijo, C. G. Rookyard, M. R. Salmanpour, A. Schindele, I. Shiri, E. Spezi, S. Tanadini-Lang, F. Tixier, T. Upadhaya, V. Valentini, J. J. M. van Griethuysen, F. Yousefirizi, H. Zaidi, H. Müller, M. Vallières, and A. Depeursinge. The image biomarker standardization initiative: Standardized convolutional filters for reproducible radiomics and enhanced clinical insights. Radiology, 310(2):e231319, 2024. Winkels and Cohen 2019 M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. J. J. M. van Griethuysen, A. Fedorov, C. Parmar, A. Hosny, N. Aucoin, V. Narayan, R. G. H. Beets-Tan, J.-C. Fillion-Robin, S. Pieper, and H. J. W. L. Aerts. Computational radiomics system to decode the radiographic phenotype. Cancer Res., 77(21):e104–e107, 2017. Weiler et al. 2018a M. Weiler, M. Geiger, M. Welling, W. Boomsma, and T. Cohen. 3D steerable CNNs: Learning rotationally equivariant features in volumetric data. In Advances in Neural Information Processing Systems, volume 2018-December, pages 10381–10392. Neural information processing systems foundation, 2018a. Weiler et al. 2018b M. Weiler, F. A. Hamprecht, and M. Storath. Learning Steerable Filters for Rotation Equivariant CNNs. CoRR, abs/1711.0, 2018b. Whybra et al. 2024 P. Whybra, A. Zwanenburg, V. Andrearczyk, R. Schaer, A. P. Apte, A. Ayotte, B. Baheti, S. Bakas, A. Bettinelli, R. Boellaard, L. Boldrini, I. Buvat, G. J. R. Cook, F. Dietsche, N. Dinapoli, H. S. Gabryś, V. Goh, M. Guckenberger, M. Hatt, M. Hosseinzadeh, A. Iyer, J. Lenkowicz, M. A. L. Loutfi, S. Löck, F. Marturano, O. Morin, C. Nioche, F. Orlhac, S. Pati, A. Rahmim, S. M. Rezaeijo, C. G. Rookyard, M. R. Salmanpour, A. Schindele, I. Shiri, E. Spezi, S. Tanadini-Lang, F. Tixier, T. Upadhaya, V. Valentini, J. J. M. van Griethuysen, F. Yousefirizi, H. Zaidi, H. Müller, M. Vallières, and A. Depeursinge. The image biomarker standardization initiative: Standardized convolutional filters for reproducible radiomics and enhanced clinical insights. Radiology, 310(2):e231319, 2024. Winkels and Cohen 2019 M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. M. Weiler, M. Geiger, M. Welling, W. Boomsma, and T. Cohen. 3D steerable CNNs: Learning rotationally equivariant features in volumetric data. In Advances in Neural Information Processing Systems, volume 2018-December, pages 10381–10392. Neural information processing systems foundation, 2018a. Weiler et al. 2018b M. Weiler, F. A. Hamprecht, and M. Storath. Learning Steerable Filters for Rotation Equivariant CNNs. CoRR, abs/1711.0, 2018b. Whybra et al. 2024 P. Whybra, A. Zwanenburg, V. Andrearczyk, R. Schaer, A. P. Apte, A. Ayotte, B. Baheti, S. Bakas, A. Bettinelli, R. Boellaard, L. Boldrini, I. Buvat, G. J. R. Cook, F. Dietsche, N. Dinapoli, H. S. Gabryś, V. Goh, M. Guckenberger, M. Hatt, M. Hosseinzadeh, A. Iyer, J. Lenkowicz, M. A. L. Loutfi, S. Löck, F. Marturano, O. Morin, C. Nioche, F. Orlhac, S. Pati, A. Rahmim, S. M. Rezaeijo, C. G. Rookyard, M. R. Salmanpour, A. Schindele, I. Shiri, E. Spezi, S. Tanadini-Lang, F. Tixier, T. Upadhaya, V. Valentini, J. J. M. van Griethuysen, F. Yousefirizi, H. Zaidi, H. Müller, M. Vallières, and A. Depeursinge. The image biomarker standardization initiative: Standardized convolutional filters for reproducible radiomics and enhanced clinical insights. Radiology, 310(2):e231319, 2024. Winkels and Cohen 2019 M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. M. Weiler, F. A. Hamprecht, and M. Storath. Learning Steerable Filters for Rotation Equivariant CNNs. CoRR, abs/1711.0, 2018b. Whybra et al. 2024 P. Whybra, A. Zwanenburg, V. Andrearczyk, R. Schaer, A. P. Apte, A. Ayotte, B. Baheti, S. Bakas, A. Bettinelli, R. Boellaard, L. Boldrini, I. Buvat, G. J. R. Cook, F. Dietsche, N. Dinapoli, H. S. Gabryś, V. Goh, M. Guckenberger, M. Hatt, M. Hosseinzadeh, A. Iyer, J. Lenkowicz, M. A. L. Loutfi, S. Löck, F. Marturano, O. Morin, C. Nioche, F. Orlhac, S. Pati, A. Rahmim, S. M. Rezaeijo, C. G. Rookyard, M. R. Salmanpour, A. Schindele, I. Shiri, E. Spezi, S. Tanadini-Lang, F. Tixier, T. Upadhaya, V. Valentini, J. J. M. van Griethuysen, F. Yousefirizi, H. Zaidi, H. Müller, M. Vallières, and A. Depeursinge. The image biomarker standardization initiative: Standardized convolutional filters for reproducible radiomics and enhanced clinical insights. Radiology, 310(2):e231319, 2024. Winkels and Cohen 2019 M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. P. Whybra, A. Zwanenburg, V. Andrearczyk, R. Schaer, A. P. Apte, A. Ayotte, B. Baheti, S. Bakas, A. Bettinelli, R. Boellaard, L. Boldrini, I. Buvat, G. J. R. Cook, F. Dietsche, N. Dinapoli, H. S. Gabryś, V. Goh, M. Guckenberger, M. Hatt, M. Hosseinzadeh, A. Iyer, J. Lenkowicz, M. A. L. Loutfi, S. Löck, F. Marturano, O. Morin, C. Nioche, F. Orlhac, S. Pati, A. Rahmim, S. M. Rezaeijo, C. G. Rookyard, M. R. Salmanpour, A. Schindele, I. Shiri, E. Spezi, S. Tanadini-Lang, F. Tixier, T. Upadhaya, V. Valentini, J. J. M. van Griethuysen, F. Yousefirizi, H. Zaidi, H. Müller, M. Vallières, and A. Depeursinge. The image biomarker standardization initiative: Standardized convolutional filters for reproducible radiomics and enhanced clinical insights. Radiology, 310(2):e231319, 2024. Winkels and Cohen 2019 M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020.
- Data from: A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities, 2015a. Vallières et al. 2015b M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Phys. Med. Biol., 60(14):5471–5496, 2015b. van Griethuysen et al. 2017 J. J. M. van Griethuysen, A. Fedorov, C. Parmar, A. Hosny, N. Aucoin, V. Narayan, R. G. H. Beets-Tan, J.-C. Fillion-Robin, S. Pieper, and H. J. W. L. Aerts. Computational radiomics system to decode the radiographic phenotype. Cancer Res., 77(21):e104–e107, 2017. Weiler et al. 2018a M. Weiler, M. Geiger, M. Welling, W. Boomsma, and T. Cohen. 3D steerable CNNs: Learning rotationally equivariant features in volumetric data. In Advances in Neural Information Processing Systems, volume 2018-December, pages 10381–10392. Neural information processing systems foundation, 2018a. Weiler et al. 2018b M. Weiler, F. A. Hamprecht, and M. Storath. Learning Steerable Filters for Rotation Equivariant CNNs. CoRR, abs/1711.0, 2018b. Whybra et al. 2024 P. Whybra, A. Zwanenburg, V. Andrearczyk, R. Schaer, A. P. Apte, A. Ayotte, B. Baheti, S. Bakas, A. Bettinelli, R. Boellaard, L. Boldrini, I. Buvat, G. J. R. Cook, F. Dietsche, N. Dinapoli, H. S. Gabryś, V. Goh, M. Guckenberger, M. Hatt, M. Hosseinzadeh, A. Iyer, J. Lenkowicz, M. A. L. Loutfi, S. Löck, F. Marturano, O. Morin, C. Nioche, F. Orlhac, S. Pati, A. Rahmim, S. M. Rezaeijo, C. G. Rookyard, M. R. Salmanpour, A. Schindele, I. Shiri, E. Spezi, S. Tanadini-Lang, F. Tixier, T. Upadhaya, V. Valentini, J. J. M. van Griethuysen, F. Yousefirizi, H. Zaidi, H. Müller, M. Vallières, and A. Depeursinge. The image biomarker standardization initiative: Standardized convolutional filters for reproducible radiomics and enhanced clinical insights. Radiology, 310(2):e231319, 2024. Winkels and Cohen 2019 M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. M. Vallières, C. R. Freeman, S. R. Skamene, and I. El Naqa. A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Phys. Med. Biol., 60(14):5471–5496, 2015b. van Griethuysen et al. 2017 J. J. M. van Griethuysen, A. Fedorov, C. Parmar, A. Hosny, N. Aucoin, V. Narayan, R. G. H. Beets-Tan, J.-C. Fillion-Robin, S. Pieper, and H. J. W. L. Aerts. Computational radiomics system to decode the radiographic phenotype. Cancer Res., 77(21):e104–e107, 2017. Weiler et al. 2018a M. Weiler, M. Geiger, M. Welling, W. Boomsma, and T. Cohen. 3D steerable CNNs: Learning rotationally equivariant features in volumetric data. In Advances in Neural Information Processing Systems, volume 2018-December, pages 10381–10392. Neural information processing systems foundation, 2018a. Weiler et al. 2018b M. Weiler, F. A. Hamprecht, and M. Storath. Learning Steerable Filters for Rotation Equivariant CNNs. CoRR, abs/1711.0, 2018b. Whybra et al. 2024 P. Whybra, A. Zwanenburg, V. Andrearczyk, R. Schaer, A. P. Apte, A. Ayotte, B. Baheti, S. Bakas, A. Bettinelli, R. Boellaard, L. Boldrini, I. Buvat, G. J. R. Cook, F. Dietsche, N. Dinapoli, H. S. Gabryś, V. Goh, M. Guckenberger, M. Hatt, M. Hosseinzadeh, A. Iyer, J. Lenkowicz, M. A. L. Loutfi, S. Löck, F. Marturano, O. Morin, C. Nioche, F. Orlhac, S. Pati, A. Rahmim, S. M. Rezaeijo, C. G. Rookyard, M. R. Salmanpour, A. Schindele, I. Shiri, E. Spezi, S. Tanadini-Lang, F. Tixier, T. Upadhaya, V. Valentini, J. J. M. van Griethuysen, F. Yousefirizi, H. Zaidi, H. Müller, M. Vallières, and A. Depeursinge. The image biomarker standardization initiative: Standardized convolutional filters for reproducible radiomics and enhanced clinical insights. Radiology, 310(2):e231319, 2024. Winkels and Cohen 2019 M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. J. J. M. van Griethuysen, A. Fedorov, C. Parmar, A. Hosny, N. Aucoin, V. Narayan, R. G. H. Beets-Tan, J.-C. Fillion-Robin, S. Pieper, and H. J. W. L. Aerts. Computational radiomics system to decode the radiographic phenotype. Cancer Res., 77(21):e104–e107, 2017. Weiler et al. 2018a M. Weiler, M. Geiger, M. Welling, W. Boomsma, and T. Cohen. 3D steerable CNNs: Learning rotationally equivariant features in volumetric data. In Advances in Neural Information Processing Systems, volume 2018-December, pages 10381–10392. Neural information processing systems foundation, 2018a. Weiler et al. 2018b M. Weiler, F. A. Hamprecht, and M. Storath. Learning Steerable Filters for Rotation Equivariant CNNs. CoRR, abs/1711.0, 2018b. Whybra et al. 2024 P. Whybra, A. Zwanenburg, V. Andrearczyk, R. Schaer, A. P. Apte, A. Ayotte, B. Baheti, S. Bakas, A. Bettinelli, R. Boellaard, L. Boldrini, I. Buvat, G. J. R. Cook, F. Dietsche, N. Dinapoli, H. S. Gabryś, V. Goh, M. Guckenberger, M. Hatt, M. Hosseinzadeh, A. Iyer, J. Lenkowicz, M. A. L. Loutfi, S. Löck, F. Marturano, O. Morin, C. Nioche, F. Orlhac, S. Pati, A. Rahmim, S. M. Rezaeijo, C. G. Rookyard, M. R. Salmanpour, A. Schindele, I. Shiri, E. Spezi, S. Tanadini-Lang, F. Tixier, T. Upadhaya, V. Valentini, J. J. M. van Griethuysen, F. Yousefirizi, H. Zaidi, H. Müller, M. Vallières, and A. Depeursinge. The image biomarker standardization initiative: Standardized convolutional filters for reproducible radiomics and enhanced clinical insights. Radiology, 310(2):e231319, 2024. Winkels and Cohen 2019 M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. M. Weiler, M. Geiger, M. Welling, W. Boomsma, and T. Cohen. 3D steerable CNNs: Learning rotationally equivariant features in volumetric data. In Advances in Neural Information Processing Systems, volume 2018-December, pages 10381–10392. Neural information processing systems foundation, 2018a. Weiler et al. 2018b M. Weiler, F. A. Hamprecht, and M. Storath. Learning Steerable Filters for Rotation Equivariant CNNs. CoRR, abs/1711.0, 2018b. Whybra et al. 2024 P. Whybra, A. Zwanenburg, V. Andrearczyk, R. Schaer, A. P. Apte, A. Ayotte, B. Baheti, S. Bakas, A. Bettinelli, R. Boellaard, L. Boldrini, I. Buvat, G. J. R. Cook, F. Dietsche, N. Dinapoli, H. S. Gabryś, V. Goh, M. Guckenberger, M. Hatt, M. Hosseinzadeh, A. Iyer, J. Lenkowicz, M. A. L. Loutfi, S. Löck, F. Marturano, O. Morin, C. Nioche, F. Orlhac, S. Pati, A. Rahmim, S. M. Rezaeijo, C. G. Rookyard, M. R. Salmanpour, A. Schindele, I. Shiri, E. Spezi, S. Tanadini-Lang, F. Tixier, T. Upadhaya, V. Valentini, J. J. M. van Griethuysen, F. Yousefirizi, H. Zaidi, H. Müller, M. Vallières, and A. Depeursinge. The image biomarker standardization initiative: Standardized convolutional filters for reproducible radiomics and enhanced clinical insights. Radiology, 310(2):e231319, 2024. Winkels and Cohen 2019 M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. M. Weiler, F. A. Hamprecht, and M. Storath. Learning Steerable Filters for Rotation Equivariant CNNs. CoRR, abs/1711.0, 2018b. Whybra et al. 2024 P. Whybra, A. Zwanenburg, V. Andrearczyk, R. Schaer, A. P. Apte, A. Ayotte, B. Baheti, S. Bakas, A. Bettinelli, R. Boellaard, L. Boldrini, I. Buvat, G. J. R. Cook, F. Dietsche, N. Dinapoli, H. S. Gabryś, V. Goh, M. Guckenberger, M. Hatt, M. Hosseinzadeh, A. Iyer, J. Lenkowicz, M. A. L. Loutfi, S. Löck, F. Marturano, O. Morin, C. Nioche, F. Orlhac, S. Pati, A. Rahmim, S. M. Rezaeijo, C. G. Rookyard, M. R. Salmanpour, A. Schindele, I. Shiri, E. Spezi, S. Tanadini-Lang, F. Tixier, T. Upadhaya, V. Valentini, J. J. M. van Griethuysen, F. Yousefirizi, H. Zaidi, H. Müller, M. Vallières, and A. Depeursinge. The image biomarker standardization initiative: Standardized convolutional filters for reproducible radiomics and enhanced clinical insights. Radiology, 310(2):e231319, 2024. Winkels and Cohen 2019 M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. P. Whybra, A. Zwanenburg, V. Andrearczyk, R. Schaer, A. P. Apte, A. Ayotte, B. Baheti, S. Bakas, A. Bettinelli, R. Boellaard, L. Boldrini, I. Buvat, G. J. R. Cook, F. Dietsche, N. Dinapoli, H. S. Gabryś, V. Goh, M. Guckenberger, M. Hatt, M. Hosseinzadeh, A. Iyer, J. Lenkowicz, M. A. L. Loutfi, S. Löck, F. Marturano, O. Morin, C. Nioche, F. Orlhac, S. Pati, A. Rahmim, S. M. Rezaeijo, C. G. Rookyard, M. R. Salmanpour, A. Schindele, I. Shiri, E. Spezi, S. Tanadini-Lang, F. Tixier, T. Upadhaya, V. Valentini, J. J. M. van Griethuysen, F. Yousefirizi, H. Zaidi, H. Müller, M. Vallières, and A. Depeursinge. The image biomarker standardization initiative: Standardized convolutional filters for reproducible radiomics and enhanced clinical insights. Radiology, 310(2):e231319, 2024. Winkels and Cohen 2019 M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020.
- A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Phys. Med. Biol., 60(14):5471–5496, 2015b. van Griethuysen et al. 2017 J. J. M. van Griethuysen, A. Fedorov, C. Parmar, A. Hosny, N. Aucoin, V. Narayan, R. G. H. Beets-Tan, J.-C. Fillion-Robin, S. Pieper, and H. J. W. L. Aerts. Computational radiomics system to decode the radiographic phenotype. Cancer Res., 77(21):e104–e107, 2017. Weiler et al. 2018a M. Weiler, M. Geiger, M. Welling, W. Boomsma, and T. Cohen. 3D steerable CNNs: Learning rotationally equivariant features in volumetric data. In Advances in Neural Information Processing Systems, volume 2018-December, pages 10381–10392. Neural information processing systems foundation, 2018a. Weiler et al. 2018b M. Weiler, F. A. Hamprecht, and M. Storath. Learning Steerable Filters for Rotation Equivariant CNNs. CoRR, abs/1711.0, 2018b. Whybra et al. 2024 P. Whybra, A. Zwanenburg, V. Andrearczyk, R. Schaer, A. P. Apte, A. Ayotte, B. Baheti, S. Bakas, A. Bettinelli, R. Boellaard, L. Boldrini, I. Buvat, G. J. R. Cook, F. Dietsche, N. Dinapoli, H. S. Gabryś, V. Goh, M. Guckenberger, M. Hatt, M. Hosseinzadeh, A. Iyer, J. Lenkowicz, M. A. L. Loutfi, S. Löck, F. Marturano, O. Morin, C. Nioche, F. Orlhac, S. Pati, A. Rahmim, S. M. Rezaeijo, C. G. Rookyard, M. R. Salmanpour, A. Schindele, I. Shiri, E. Spezi, S. Tanadini-Lang, F. Tixier, T. Upadhaya, V. Valentini, J. J. M. van Griethuysen, F. Yousefirizi, H. Zaidi, H. Müller, M. Vallières, and A. Depeursinge. The image biomarker standardization initiative: Standardized convolutional filters for reproducible radiomics and enhanced clinical insights. Radiology, 310(2):e231319, 2024. Winkels and Cohen 2019 M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. J. J. M. van Griethuysen, A. Fedorov, C. Parmar, A. Hosny, N. Aucoin, V. Narayan, R. G. H. Beets-Tan, J.-C. Fillion-Robin, S. Pieper, and H. J. W. L. Aerts. Computational radiomics system to decode the radiographic phenotype. Cancer Res., 77(21):e104–e107, 2017. Weiler et al. 2018a M. Weiler, M. Geiger, M. Welling, W. Boomsma, and T. Cohen. 3D steerable CNNs: Learning rotationally equivariant features in volumetric data. In Advances in Neural Information Processing Systems, volume 2018-December, pages 10381–10392. Neural information processing systems foundation, 2018a. Weiler et al. 2018b M. Weiler, F. A. Hamprecht, and M. Storath. Learning Steerable Filters for Rotation Equivariant CNNs. CoRR, abs/1711.0, 2018b. Whybra et al. 2024 P. Whybra, A. Zwanenburg, V. Andrearczyk, R. Schaer, A. P. Apte, A. Ayotte, B. Baheti, S. Bakas, A. Bettinelli, R. Boellaard, L. Boldrini, I. Buvat, G. J. R. Cook, F. Dietsche, N. Dinapoli, H. S. Gabryś, V. Goh, M. Guckenberger, M. Hatt, M. Hosseinzadeh, A. Iyer, J. Lenkowicz, M. A. L. Loutfi, S. Löck, F. Marturano, O. Morin, C. Nioche, F. Orlhac, S. Pati, A. Rahmim, S. M. Rezaeijo, C. G. Rookyard, M. R. Salmanpour, A. Schindele, I. Shiri, E. Spezi, S. Tanadini-Lang, F. Tixier, T. Upadhaya, V. Valentini, J. J. M. van Griethuysen, F. Yousefirizi, H. Zaidi, H. Müller, M. Vallières, and A. Depeursinge. The image biomarker standardization initiative: Standardized convolutional filters for reproducible radiomics and enhanced clinical insights. Radiology, 310(2):e231319, 2024. Winkels and Cohen 2019 M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. M. Weiler, M. Geiger, M. Welling, W. Boomsma, and T. Cohen. 3D steerable CNNs: Learning rotationally equivariant features in volumetric data. In Advances in Neural Information Processing Systems, volume 2018-December, pages 10381–10392. Neural information processing systems foundation, 2018a. Weiler et al. 2018b M. Weiler, F. A. Hamprecht, and M. Storath. Learning Steerable Filters for Rotation Equivariant CNNs. CoRR, abs/1711.0, 2018b. Whybra et al. 2024 P. Whybra, A. Zwanenburg, V. Andrearczyk, R. Schaer, A. P. Apte, A. Ayotte, B. Baheti, S. Bakas, A. Bettinelli, R. Boellaard, L. Boldrini, I. Buvat, G. J. R. Cook, F. Dietsche, N. Dinapoli, H. S. Gabryś, V. Goh, M. Guckenberger, M. Hatt, M. Hosseinzadeh, A. Iyer, J. Lenkowicz, M. A. L. Loutfi, S. Löck, F. Marturano, O. Morin, C. Nioche, F. Orlhac, S. Pati, A. Rahmim, S. M. Rezaeijo, C. G. Rookyard, M. R. Salmanpour, A. Schindele, I. Shiri, E. Spezi, S. Tanadini-Lang, F. Tixier, T. Upadhaya, V. Valentini, J. J. M. van Griethuysen, F. Yousefirizi, H. Zaidi, H. Müller, M. Vallières, and A. Depeursinge. The image biomarker standardization initiative: Standardized convolutional filters for reproducible radiomics and enhanced clinical insights. Radiology, 310(2):e231319, 2024. Winkels and Cohen 2019 M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. M. Weiler, F. A. Hamprecht, and M. Storath. Learning Steerable Filters for Rotation Equivariant CNNs. CoRR, abs/1711.0, 2018b. Whybra et al. 2024 P. Whybra, A. Zwanenburg, V. Andrearczyk, R. Schaer, A. P. Apte, A. Ayotte, B. Baheti, S. Bakas, A. Bettinelli, R. Boellaard, L. Boldrini, I. Buvat, G. J. R. Cook, F. Dietsche, N. Dinapoli, H. S. Gabryś, V. Goh, M. Guckenberger, M. Hatt, M. Hosseinzadeh, A. Iyer, J. Lenkowicz, M. A. L. Loutfi, S. Löck, F. Marturano, O. Morin, C. Nioche, F. Orlhac, S. Pati, A. Rahmim, S. M. Rezaeijo, C. G. Rookyard, M. R. Salmanpour, A. Schindele, I. Shiri, E. Spezi, S. Tanadini-Lang, F. Tixier, T. Upadhaya, V. Valentini, J. J. M. van Griethuysen, F. Yousefirizi, H. Zaidi, H. Müller, M. Vallières, and A. Depeursinge. The image biomarker standardization initiative: Standardized convolutional filters for reproducible radiomics and enhanced clinical insights. Radiology, 310(2):e231319, 2024. Winkels and Cohen 2019 M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. P. Whybra, A. Zwanenburg, V. Andrearczyk, R. Schaer, A. P. Apte, A. Ayotte, B. Baheti, S. Bakas, A. Bettinelli, R. Boellaard, L. Boldrini, I. Buvat, G. J. R. Cook, F. Dietsche, N. Dinapoli, H. S. Gabryś, V. Goh, M. Guckenberger, M. Hatt, M. Hosseinzadeh, A. Iyer, J. Lenkowicz, M. A. L. Loutfi, S. Löck, F. Marturano, O. Morin, C. Nioche, F. Orlhac, S. Pati, A. Rahmim, S. M. Rezaeijo, C. G. Rookyard, M. R. Salmanpour, A. Schindele, I. Shiri, E. Spezi, S. Tanadini-Lang, F. Tixier, T. Upadhaya, V. Valentini, J. J. M. van Griethuysen, F. Yousefirizi, H. Zaidi, H. Müller, M. Vallières, and A. Depeursinge. The image biomarker standardization initiative: Standardized convolutional filters for reproducible radiomics and enhanced clinical insights. Radiology, 310(2):e231319, 2024. Winkels and Cohen 2019 M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020.
- Computational radiomics system to decode the radiographic phenotype. Cancer Res., 77(21):e104–e107, 2017. Weiler et al. 2018a M. Weiler, M. Geiger, M. Welling, W. Boomsma, and T. Cohen. 3D steerable CNNs: Learning rotationally equivariant features in volumetric data. In Advances in Neural Information Processing Systems, volume 2018-December, pages 10381–10392. Neural information processing systems foundation, 2018a. Weiler et al. 2018b M. Weiler, F. A. Hamprecht, and M. Storath. Learning Steerable Filters for Rotation Equivariant CNNs. CoRR, abs/1711.0, 2018b. Whybra et al. 2024 P. Whybra, A. Zwanenburg, V. Andrearczyk, R. Schaer, A. P. Apte, A. Ayotte, B. Baheti, S. Bakas, A. Bettinelli, R. Boellaard, L. Boldrini, I. Buvat, G. J. R. Cook, F. Dietsche, N. Dinapoli, H. S. Gabryś, V. Goh, M. Guckenberger, M. Hatt, M. Hosseinzadeh, A. Iyer, J. Lenkowicz, M. A. L. Loutfi, S. Löck, F. Marturano, O. Morin, C. Nioche, F. Orlhac, S. Pati, A. Rahmim, S. M. Rezaeijo, C. G. Rookyard, M. R. Salmanpour, A. Schindele, I. Shiri, E. Spezi, S. Tanadini-Lang, F. Tixier, T. Upadhaya, V. Valentini, J. J. M. van Griethuysen, F. Yousefirizi, H. Zaidi, H. Müller, M. Vallières, and A. Depeursinge. The image biomarker standardization initiative: Standardized convolutional filters for reproducible radiomics and enhanced clinical insights. Radiology, 310(2):e231319, 2024. Winkels and Cohen 2019 M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. M. Weiler, M. Geiger, M. Welling, W. Boomsma, and T. Cohen. 3D steerable CNNs: Learning rotationally equivariant features in volumetric data. In Advances in Neural Information Processing Systems, volume 2018-December, pages 10381–10392. Neural information processing systems foundation, 2018a. Weiler et al. 2018b M. Weiler, F. A. Hamprecht, and M. Storath. Learning Steerable Filters for Rotation Equivariant CNNs. CoRR, abs/1711.0, 2018b. Whybra et al. 2024 P. Whybra, A. Zwanenburg, V. Andrearczyk, R. Schaer, A. P. Apte, A. Ayotte, B. Baheti, S. Bakas, A. Bettinelli, R. Boellaard, L. Boldrini, I. Buvat, G. J. R. Cook, F. Dietsche, N. Dinapoli, H. S. Gabryś, V. Goh, M. Guckenberger, M. Hatt, M. Hosseinzadeh, A. Iyer, J. Lenkowicz, M. A. L. Loutfi, S. Löck, F. Marturano, O. Morin, C. Nioche, F. Orlhac, S. Pati, A. Rahmim, S. M. Rezaeijo, C. G. Rookyard, M. R. Salmanpour, A. Schindele, I. Shiri, E. Spezi, S. Tanadini-Lang, F. Tixier, T. Upadhaya, V. Valentini, J. J. M. van Griethuysen, F. Yousefirizi, H. Zaidi, H. Müller, M. Vallières, and A. Depeursinge. The image biomarker standardization initiative: Standardized convolutional filters for reproducible radiomics and enhanced clinical insights. Radiology, 310(2):e231319, 2024. Winkels and Cohen 2019 M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. M. Weiler, F. A. Hamprecht, and M. Storath. Learning Steerable Filters for Rotation Equivariant CNNs. CoRR, abs/1711.0, 2018b. Whybra et al. 2024 P. Whybra, A. Zwanenburg, V. Andrearczyk, R. Schaer, A. P. Apte, A. Ayotte, B. Baheti, S. Bakas, A. Bettinelli, R. Boellaard, L. Boldrini, I. Buvat, G. J. R. Cook, F. Dietsche, N. Dinapoli, H. S. Gabryś, V. Goh, M. Guckenberger, M. Hatt, M. Hosseinzadeh, A. Iyer, J. Lenkowicz, M. A. L. Loutfi, S. Löck, F. Marturano, O. Morin, C. Nioche, F. Orlhac, S. Pati, A. Rahmim, S. M. Rezaeijo, C. G. Rookyard, M. R. Salmanpour, A. Schindele, I. Shiri, E. Spezi, S. Tanadini-Lang, F. Tixier, T. Upadhaya, V. Valentini, J. J. M. van Griethuysen, F. Yousefirizi, H. Zaidi, H. Müller, M. Vallières, and A. Depeursinge. The image biomarker standardization initiative: Standardized convolutional filters for reproducible radiomics and enhanced clinical insights. Radiology, 310(2):e231319, 2024. Winkels and Cohen 2019 M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. P. Whybra, A. Zwanenburg, V. Andrearczyk, R. Schaer, A. P. Apte, A. Ayotte, B. Baheti, S. Bakas, A. Bettinelli, R. Boellaard, L. Boldrini, I. Buvat, G. J. R. Cook, F. Dietsche, N. Dinapoli, H. S. Gabryś, V. Goh, M. Guckenberger, M. Hatt, M. Hosseinzadeh, A. Iyer, J. Lenkowicz, M. A. L. Loutfi, S. Löck, F. Marturano, O. Morin, C. Nioche, F. Orlhac, S. Pati, A. Rahmim, S. M. Rezaeijo, C. G. Rookyard, M. R. Salmanpour, A. Schindele, I. Shiri, E. Spezi, S. Tanadini-Lang, F. Tixier, T. Upadhaya, V. Valentini, J. J. M. van Griethuysen, F. Yousefirizi, H. Zaidi, H. Müller, M. Vallières, and A. Depeursinge. The image biomarker standardization initiative: Standardized convolutional filters for reproducible radiomics and enhanced clinical insights. Radiology, 310(2):e231319, 2024. Winkels and Cohen 2019 M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020.
- 3D steerable CNNs: Learning rotationally equivariant features in volumetric data. In Advances in Neural Information Processing Systems, volume 2018-December, pages 10381–10392. Neural information processing systems foundation, 2018a. Weiler et al. 2018b M. Weiler, F. A. Hamprecht, and M. Storath. Learning Steerable Filters for Rotation Equivariant CNNs. CoRR, abs/1711.0, 2018b. Whybra et al. 2024 P. Whybra, A. Zwanenburg, V. Andrearczyk, R. Schaer, A. P. Apte, A. Ayotte, B. Baheti, S. Bakas, A. Bettinelli, R. Boellaard, L. Boldrini, I. Buvat, G. J. R. Cook, F. Dietsche, N. Dinapoli, H. S. Gabryś, V. Goh, M. Guckenberger, M. Hatt, M. Hosseinzadeh, A. Iyer, J. Lenkowicz, M. A. L. Loutfi, S. Löck, F. Marturano, O. Morin, C. Nioche, F. Orlhac, S. Pati, A. Rahmim, S. M. Rezaeijo, C. G. Rookyard, M. R. Salmanpour, A. Schindele, I. Shiri, E. Spezi, S. Tanadini-Lang, F. Tixier, T. Upadhaya, V. Valentini, J. J. M. van Griethuysen, F. Yousefirizi, H. Zaidi, H. Müller, M. Vallières, and A. Depeursinge. The image biomarker standardization initiative: Standardized convolutional filters for reproducible radiomics and enhanced clinical insights. Radiology, 310(2):e231319, 2024. Winkels and Cohen 2019 M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. M. Weiler, F. A. Hamprecht, and M. Storath. Learning Steerable Filters for Rotation Equivariant CNNs. CoRR, abs/1711.0, 2018b. Whybra et al. 2024 P. Whybra, A. Zwanenburg, V. Andrearczyk, R. Schaer, A. P. Apte, A. Ayotte, B. Baheti, S. Bakas, A. Bettinelli, R. Boellaard, L. Boldrini, I. Buvat, G. J. R. Cook, F. Dietsche, N. Dinapoli, H. S. Gabryś, V. Goh, M. Guckenberger, M. Hatt, M. Hosseinzadeh, A. Iyer, J. Lenkowicz, M. A. L. Loutfi, S. Löck, F. Marturano, O. Morin, C. Nioche, F. Orlhac, S. Pati, A. Rahmim, S. M. Rezaeijo, C. G. Rookyard, M. R. Salmanpour, A. Schindele, I. Shiri, E. Spezi, S. Tanadini-Lang, F. Tixier, T. Upadhaya, V. Valentini, J. J. M. van Griethuysen, F. Yousefirizi, H. Zaidi, H. Müller, M. Vallières, and A. Depeursinge. The image biomarker standardization initiative: Standardized convolutional filters for reproducible radiomics and enhanced clinical insights. Radiology, 310(2):e231319, 2024. Winkels and Cohen 2019 M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. P. Whybra, A. Zwanenburg, V. Andrearczyk, R. Schaer, A. P. Apte, A. Ayotte, B. Baheti, S. Bakas, A. Bettinelli, R. Boellaard, L. Boldrini, I. Buvat, G. J. R. Cook, F. Dietsche, N. Dinapoli, H. S. Gabryś, V. Goh, M. Guckenberger, M. Hatt, M. Hosseinzadeh, A. Iyer, J. Lenkowicz, M. A. L. Loutfi, S. Löck, F. Marturano, O. Morin, C. Nioche, F. Orlhac, S. Pati, A. Rahmim, S. M. Rezaeijo, C. G. Rookyard, M. R. Salmanpour, A. Schindele, I. Shiri, E. Spezi, S. Tanadini-Lang, F. Tixier, T. Upadhaya, V. Valentini, J. J. M. van Griethuysen, F. Yousefirizi, H. Zaidi, H. Müller, M. Vallières, and A. Depeursinge. The image biomarker standardization initiative: Standardized convolutional filters for reproducible radiomics and enhanced clinical insights. Radiology, 310(2):e231319, 2024. Winkels and Cohen 2019 M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020.
- Learning Steerable Filters for Rotation Equivariant CNNs. CoRR, abs/1711.0, 2018b. Whybra et al. 2024 P. Whybra, A. Zwanenburg, V. Andrearczyk, R. Schaer, A. P. Apte, A. Ayotte, B. Baheti, S. Bakas, A. Bettinelli, R. Boellaard, L. Boldrini, I. Buvat, G. J. R. Cook, F. Dietsche, N. Dinapoli, H. S. Gabryś, V. Goh, M. Guckenberger, M. Hatt, M. Hosseinzadeh, A. Iyer, J. Lenkowicz, M. A. L. Loutfi, S. Löck, F. Marturano, O. Morin, C. Nioche, F. Orlhac, S. Pati, A. Rahmim, S. M. Rezaeijo, C. G. Rookyard, M. R. Salmanpour, A. Schindele, I. Shiri, E. Spezi, S. Tanadini-Lang, F. Tixier, T. Upadhaya, V. Valentini, J. J. M. van Griethuysen, F. Yousefirizi, H. Zaidi, H. Müller, M. Vallières, and A. Depeursinge. The image biomarker standardization initiative: Standardized convolutional filters for reproducible radiomics and enhanced clinical insights. Radiology, 310(2):e231319, 2024. Winkels and Cohen 2019 M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. P. Whybra, A. Zwanenburg, V. Andrearczyk, R. Schaer, A. P. Apte, A. Ayotte, B. Baheti, S. Bakas, A. Bettinelli, R. Boellaard, L. Boldrini, I. Buvat, G. J. R. Cook, F. Dietsche, N. Dinapoli, H. S. Gabryś, V. Goh, M. Guckenberger, M. Hatt, M. Hosseinzadeh, A. Iyer, J. Lenkowicz, M. A. L. Loutfi, S. Löck, F. Marturano, O. Morin, C. Nioche, F. Orlhac, S. Pati, A. Rahmim, S. M. Rezaeijo, C. G. Rookyard, M. R. Salmanpour, A. Schindele, I. Shiri, E. Spezi, S. Tanadini-Lang, F. Tixier, T. Upadhaya, V. Valentini, J. J. M. van Griethuysen, F. Yousefirizi, H. Zaidi, H. Müller, M. Vallières, and A. Depeursinge. The image biomarker standardization initiative: Standardized convolutional filters for reproducible radiomics and enhanced clinical insights. Radiology, 310(2):e231319, 2024. Winkels and Cohen 2019 M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020.
- The image biomarker standardization initiative: Standardized convolutional filters for reproducible radiomics and enhanced clinical insights. Radiology, 310(2):e231319, 2024. Winkels and Cohen 2019 M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020.
- M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, 55:15–26, 2019. Zhang et al. 2015 L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. L. Zhang, D. V. Fried, X. J. Fave, L. A. Hunter, J. Yang, and L. E. Court. IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020.
- IBEX : An open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics, 42(3):1341–1353, 2015. Zwanenburg 2019 A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020.
- A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging, 46(13):2638–2655, 2019. Zwanenburg et al. 2016 A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. A. Zwanenburg, S. Leger, M. Vallières, and S. Löck. Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020.
- Image biomarker standardisation initiative. arXiv, 1612.07003, 2016. Zwanenburg et al. 2020 A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020. A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. W. L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G. J. R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C. V. Dinh, S. Echegaray, I. El Naqa, A. Y. Fedorov, R. Gatta, R. J. Gillies, V. Goh, M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R. T. H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K. H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. G. Pfaehler, A. Rahmim, A. U. K. Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. J. H. M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. C. Troost, T. Upadhaya, V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. P. van Velden, P. Whybra, C. Richter, and S. Löck. The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020.
- The image biomarker standardization initiative: Standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology, 191145, 2020.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.