Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

SALD: Sign Agnostic Learning with Derivatives (2006.05400v2)

Published 9 Jun 2020 in cs.CV, cs.GR, and cs.LG

Abstract: Learning 3D geometry directly from raw data, such as point clouds, triangle soups, or unoriented meshes is still a challenging task that feeds many downstream computer vision and graphics applications. In this paper, we introduce SALD: a method for learning implicit neural representations of shapes directly from raw data. We generalize sign agnostic learning (SAL) to include derivatives: given an unsigned distance function to the input raw data, we advocate a novel sign agnostic regression loss, incorporating both pointwise values and gradients of the unsigned distance function. Optimizing this loss leads to a signed implicit function solution, the zero level set of which is a high quality and valid manifold approximation to the input 3D data. The motivation behind SALD is that incorporating derivatives in a regression loss leads to a lower sample complexity, and consequently better fitting. In addition, we prove that SAL enjoys a minimal length property in 2D, favoring minimal length solutions. More importantly, we are able to show that this property still holds for SALD, i.e., with derivatives included. We demonstrate the efficacy of SALD for shape space learning on two challenging datasets: ShapeNet that contains inconsistent orientation and non-manifold meshes, and D-Faust that contains raw 3D scans (triangle soups). On both these datasets, we present state-of-the-art results.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Matan Atzmon (14 papers)
  2. Yaron Lipman (55 papers)
Citations (137)

Summary

We haven't generated a summary for this paper yet.