Papers
Topics
Authors
Recent
2000 character limit reached

Homomorphic Sensing of Subspace Arrangements (2006.05158v4)

Published 9 Jun 2020 in cs.LG, math.AG, and stat.ML

Abstract: Homomorphic sensing is a recent algebraic-geometric framework that studies the unique recovery of points in a linear subspace from their images under a given collection of linear maps. It has been successful in interpreting such a recovery in the case of permutations composed by coordinate projections, an important instance in applications known as unlabeled sensing, which models data that are out of order and have missing values. In this paper, we provide tighter and simpler conditions that guarantee the unique recovery for the single-subspace case, extend the result to the case of a subspace arrangement, and show that the unique recovery in a single subspace is locally stable under noise. We specialize our results to several examples of homomorphic sensing such as real phase retrieval and unlabeled sensing. In so doing, in a unified way, we obtain conditions that guarantee the unique recovery for those examples, typically known via diverse techniques in the literature, as well as novel conditions for sparse and unsigned versions of unlabeled sensing. Similarly, our noise result also implies that the unique recovery in unlabeled sensing is locally stable.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.