Papers
Topics
Authors
Recent
2000 character limit reached

Improving k-Means Clustering Performance with Disentangled Internal Representations

Published 5 Jun 2020 in cs.LG, cs.NE, and stat.ML | (2006.04535v1)

Abstract: Deep clustering algorithms combine representation learning and clustering by jointly optimizing a clustering loss and a non-clustering loss. In such methods, a deep neural network is used for representation learning together with a clustering network. Instead of following this framework to improve clustering performance, we propose a simpler approach of optimizing the entanglement of the learned latent code representation of an autoencoder. We define entanglement as how close pairs of points from the same class or structure are, relative to pairs of points from different classes or structures. To measure the entanglement of data points, we use the soft nearest neighbor loss, and expand it by introducing an annealing temperature factor. Using our proposed approach, the test clustering accuracy was 96.2% on the MNIST dataset, 85.6% on the Fashion-MNIST dataset, and 79.2% on the EMNIST Balanced dataset, outperforming our baseline models.

Citations (10)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.