Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Spectral Clustering via Ensemble Deep Autoencoder Learning (SC-EDAE) (1901.02291v2)

Published 8 Jan 2019 in cs.LG and stat.ML

Abstract: Recently, a number of works have studied clustering strategies that combine classical clustering algorithms and deep learning methods. These approaches follow either a sequential way, where a deep representation is learned using a deep autoencoder before obtaining clusters with k-means, or a simultaneous way, where deep representation and clusters are learned jointly by optimizing a single objective function. Both strategies improve clustering performance, however the robustness of these approaches is impeded by several deep autoencoder setting issues, among which the weights initialization, the width and number of layers or the number of epochs. To alleviate the impact of such hyperparameters setting on the clustering performance, we propose a new model which combines the spectral clustering and deep autoencoder strengths in an ensemble learning framework. Extensive experiments on various benchmark datasets demonstrate the potential and robustness of our approach compared to state-of-the-art deep clustering methods.

Citations (71)

Summary

We haven't generated a summary for this paper yet.