Guarded Deep Learning using Scenario-Based Modeling (2006.03863v1)
Abstract: Deep neural networks (DNNs) are becoming prevalent, often outperforming manually-created systems. Unfortunately, DNN models are opaque to humans, and may behave in unexpected ways when deployed. One approach for allowing safer deployment of DNN models calls for augmenting them with hand-crafted override rules, which serve to override decisions made by the DNN model when certain criteria are met. Here, we propose to bring together DNNs and the well-studied scenario-based modeling paradigm, by expressing these override rules as simple and intuitive scenarios. This approach can lead to override rules that are comprehensible to humans, but are also sufficiently expressive and powerful to increase the overall safety of the model. We describe how to extend and apply scenario-based modeling to this new setting, and demonstrate our proposed technique on multiple DNN models.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.