Papers
Topics
Authors
Recent
2000 character limit reached

Data-driven Energy Management Strategy for Plug-in Hybrid Electric Vehicles with Real-World Trip Information

Published 5 Jun 2020 in eess.SY and cs.SY | (2006.03704v1)

Abstract: This paper presents a data-driven supervisory energy management strategy (EMS) for plug-in hybrid electric vehicles which leverages Vehicle-to-Cloud connectivity to increase energy efficiency by learning control policies from completed trips. The proposed EMS consists of two layers, a cloud layer and an on-board layer. The cloud layer has two main tasks: the first task is to learn EMS policy parameters from historical trip data, and the second task is to provide the policy parameters along a certain route requested from the vehicle. The on-board layer receives the learned policy parameters from the cloud layer and computes a real-time solution to the powertrain energy management problem, using a model predictive control scheme. The proposed EMS is evaluated on more than 3000 miles (48 independent driving cycles) of real-world trip data, collected along three commuting routes in California. For the routes, the proposed algorithm shows 3.3%, 7.3%, and 6.5% improvement in average MPGe when compared to a baseline EMS.

Citations (8)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.