Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Robust Face Verification via Disentangled Representations (2006.03638v2)

Published 5 Jun 2020 in cs.CV and cs.LG

Abstract: We introduce a robust algorithm for face verification, i.e., deciding whether twoimages are of the same person or not. Our approach is a novel take on the idea ofusing deep generative networks for adversarial robustness. We use the generativemodel during training as an online augmentation method instead of a test-timepurifier that removes adversarial noise. Our architecture uses a contrastive loss termand a disentangled generative model to sample negative pairs. Instead of randomlypairing two real images, we pair an image with its class-modified counterpart whilekeeping its content (pose, head tilt, hair, etc.) intact. This enables us to efficientlysample hard negative pairs for the contrastive loss. We experimentally show that, when coupled with adversarial training, the proposed scheme converges with aweak inner solver and has a higher clean and robust accuracy than state-of-the-art-methods when evaluated against white-box physical attacks.

Citations (1)

Summary

We haven't generated a summary for this paper yet.