Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Lifted Inference in 2-Variable Markov Logic Networks with Function and Cardinality Constraints Using Discrete Fourier Transform (2006.03432v2)

Published 4 Jun 2020 in cs.AI and cs.LO

Abstract: In this paper we show that inference in 2-variable Markov logic networks (MLNs) with cardinality and function constraints is domain-liftable. To obtain this result we use existing domain-lifted algorithms for weighted first-order model counting (Van den Broeck et al, KR 2014) together with discrete Fourier transform of certain distributions associated to MLNs.

Citations (3)

Summary

We haven't generated a summary for this paper yet.