Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 71 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 426 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Completely solving the quintic by iteration (2006.01876v2)

Published 2 Jun 2020 in math.DS

Abstract: In the late nineteenth century, Felix Klein revived the problem of solving the quintic equation from the moribund state into which Galois had placed it. Klein's approach was a mix of algebra and geometry built on the structure of the regular icosahedron. His method's key feature is the connection between the quintic's Galois group and the rotational symmetries of the icosahedron. Roughly a century after Klein's work, P. Doyle and C. McMullen developed an algorithm for solving the quintic that also exploited icosahedral symmetry. Their innovation was to employ a symmetrical dynamical system in one complex variable. In effect, the dynamical behavior provides for a partial breaking of the polynomial's symmetry and the extraction of two roots following one iterative run of the map. The recent discovery of a map whose dynamics breaks all of the quintic's symmetry allows for five roots to emerge from a single run. After sketching some algebraic and geometric background, the discussion works out an explicit procedure for solving the quintic in a complete sense.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.