Papers
Topics
Authors
Recent
Search
2000 character limit reached

A Brief Account of Klein's Icosahedral Extensions

Published 1 Feb 2021 in math.NA and cs.NA | (2102.01019v1)

Abstract: We present an alternative relatively easy way to understand and determine the zeros of a quintic whose Galois group is isomorphic to the group of rotational symmetries of a regular icosahedron. The extensive algebraic procedures of Klein in his famous \textit{Vorlesungen \"uber das Ikosaeder und die Aufl\"osung der Gleichungen vom f\"unften Grade} are here shortened via Heymann's theory of transformations. Also, we give a complete explanation of the so-called icosahedral equation and its solution in terms of Gaussian hypergeometric functions. As an innovative element, we construct this solution by using algebraic transformations of hypergeometric series. Within this framework, we develop a practical algorithm to compute the zeros of the quintic.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.