Papers
Topics
Authors
Recent
2000 character limit reached

Online State Estimation for Time-Varying Systems

Published 31 May 2020 in eess.SY, cs.SY, and math.OC | (2006.00628v2)

Abstract: The paper investigates the problem of estimating the state of a time-varying system with a linear measurement model; in particular, the paper considers the case where the number of measurements available can be smaller than the number of states. In lieu of a batch linear least-squares (LS) approach -- well suited for static networks, where a sufficient number of measurements could be collected to obtain a full-rank design matrix -- the paper proposes an online algorithm to estimate the possibly time-varying state by processing measurements as and when available. The design of the algorithm hinges on a generalized LS cost augmented with a proximal-point-type regularization. With the solution of the regularized LS problem available in closed-form, the online algorithm is written as a linear dynamical system where the state is updated based on the previous estimate and based on the new available measurements. Conditions under which the algorithmic steps are in fact a contractive mapping are shown, and bounds on the estimation error are derived for different noise models. Numerical simulations are provided to corroborate the analytical findings.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.