Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Scheduling Nonlinear Sensors for Stochastic Process Estimation (1609.08536v1)

Published 27 Sep 2016 in cs.SY, cs.RO, and math.OC

Abstract: In this paper, we focus on activating only a few sensors, among many available, to estimate the state of a stochastic process of interest. This problem is important in applications such as target tracking and simultaneous localization and mapping (SLAM). It is challenging since it involves stochastic systems whose evolution is largely unknown, sensors with nonlinear measurements, and limited operational resources that constrain the number of active sensors at each measurement step. We provide an algorithm applicable to general stochastic processes and nonlinear measurements whose time complexity is linear in the planning horizon and whose performance is a multiplicative factor 1/2 away from the optimal performance. This is notable because the algorithm offers a significant computational advantage over the polynomial-time algorithm that achieves the best approximation factor 1/e. In addition, for important classes of Gaussian processes and nonlinear measurements corrupted with Gaussian noise, our algorithm enjoys the same time complexity as even the state-of-the-art algorithms for linear systems and measurements. We achieve our results by proving two properties for the entropy of the batch state vector conditioned on the measurements: a) it is supermodular in the choice of the sensors; b) it has a sparsity pattern (involves block tri-diagonal matrices) that facilitates its evaluation at each sensor set.

Citations (20)

Summary

We haven't generated a summary for this paper yet.